We introduce a notion of viscosity solutions for a general class of elliptic-parabolic phase transition problems. These include the Richards equation, which is a classical model in filtration theory. Existence and uniqueness results are proved via the comparison principle. In particular, we show existence and stability properties of maximal and minimal viscosity solutions for a general class of initial data. These results are new, even in the linear case, where we also show that viscosity solutions coincide with the regular weak solutions introduced in Alt and Luckhaus (Math Z 183:311-341, 1983).