MEAN VALUE PROPERTY OF HARMONIC FUNCTION ON THE HIGHER-DIMENSIONAL SIERPINSKI GASKET

被引:11
|
作者
Wu, Yipeng [1 ]
Chen, Zhilong [1 ]
Zhang, Xia [2 ]
Zhao, Xudong [1 ]
机构
[1] Army Engn Univ PLA, Nanjing 211101, Peoples R China
[2] Nanjing Univ Sci & Technol, Inst Sci, Nanjing 211101, Peoples R China
基金
中国国家自然科学基金;
关键词
Mean Value Theorem; Harmonic Function; Higher-Dimensional Sierpinski Gasket; TRACE THEOREM; LAPLACIAN; DOMAIN;
D O I
10.1142/S0218348X20500772
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Harmonic functions possess the mean value property, that is, the value of the function at any point is equal to the average value of the function in a domain that contain this point. It is a very attractive problem to look for analogous results in the fractal context. In this paper, we establish a similar results of the mean value property for the harmonic functions on the higher-dimensional Sierpinski gasket.
引用
收藏
页数:10
相关论文
共 50 条