Classification of metallic shaped hypersurfaces in real space forms

被引:21
作者
Ozgur, Cihan [1 ]
Yilmaz Ozgur, Nihal [1 ]
机构
[1] Balikesir Univ, Dept Math, Cagis, Balikesir, Turkey
关键词
Hypersurface; real space form; metallic means family; pseudosymmetric hypersurface; semisymmetric hypersurface; RIEMANNIAN-MANIFOLDS;
D O I
10.3906/mat-1408-17
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define the notion of a metallic shaped hypersurface and give the full classification of metallic shaped hypersurfaces in real space forms. We deduce that every metallic shaped hypersurface in real space forms is a semisymmetric hypersurface.
引用
收藏
页码:784 / 794
页数:11
相关论文
共 17 条
[1]  
[Anonymous], 2015, Mathematica
[2]   Isoparametric and Dupin Hypersurfaces [J].
Cecil, Thomas E. .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2008, 4
[3]   Golden differential geometry [J].
Crasmareanu, Mircea ;
Hretcanu, Cristina-Elena .
CHAOS SOLITONS & FRACTALS, 2008, 38 (05) :1229-1238
[4]   GOLDEN- AND PRODUCT-SHAPED HYPERSURFACES IN REAL SPACE FORMS [J].
Crasmareanu, Mircea ;
Hretcanu, Cristina-Elena ;
Munteanu, Marian-Ioan .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2013, 10 (04)
[5]  
de Spinadel VW, 2000, P STEKLOV I MATH S1, P194
[6]   On characterization of the onset to chaos [J].
DeSpinadel, VW .
CHAOS SOLITONS & FRACTALS, 1997, 8 (10) :1631-1643
[7]  
Deszcz R., 1994, Bull. Inst. Math. Acad. Sin., V22, P167
[8]  
Deszcz R., 1992, B SOC MATH BELG A, V44, P1
[9]  
Djoric M, 2010, DEV MATH, V19, P1, DOI 10.1007/978-1-4419-0434-8
[10]   SILVER MEAN HAUSDORFF DIMENSION AND CANTOR SETS [J].
ELNASCHIE, MS .
CHAOS SOLITONS & FRACTALS, 1994, 4 (10) :1861-1869