Molecular Dynamics Modeling of the Conductivity of Lithiated Nafion Containing Nonaqueous Solvents

被引:15
作者
Burlatsky, Sergei [1 ]
Darling, Robert M. [1 ]
Novikov, Dmitri [1 ]
Atrazhev, Vadim V. [2 ,3 ]
Sultanov, Vadim I. [3 ]
Astakhova, Tatiana Y. [2 ,3 ]
Su, Liang [4 ]
Brushett, Fikile [4 ]
机构
[1] United Technol Res Ctr, E Hartford, CT 06108 USA
[2] Russian Acad Sci, Inst Biochem Phys, Moscow 119334, Russia
[3] Sci Technol LLC, Moscow 119334, Russia
[4] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
关键词
IONIC-CONDUCTIVITY; POLYMER ELECTROLYTE; DIMETHYL-SULFOXIDE; PROTON TRANSPORT; WATER-UPTAKE; FORCE-FIELD; LITHIUM ION; SIMULATION; MEMBRANE; METHANOL;
D O I
10.1149/2.0461610jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
We use molecular dynamics to predict the ionic conductivities of lithiated Nafion perfluorinated ionomeric membranes swelled in dimethyl sulfoxide (DMSO) and acetonitrile (ACN). The experimental conductivity of lithiated Nafion swollen with DMSO is two orders of magnitude higher than with ACN. Conversely, the mobility of Li+ ions in a solution of LiPF6 in ACN is approximately six times higher than in DMSO. In this work, we demonstrate that the ionic conductivity of Nafion is substantially governed by the concentration of free Li+ ions, i.e. by the degree of dissociation of the Li+ and SO3- pairs, and that the inherent mobility of Li+ in different solvents is of secondary importance. (C) The Author(s) 2016. Published by ECS. All rights reserved.
引用
收藏
页码:A2232 / A2239
页数:8
相关论文
共 50 条
  • [41] Size effects in molecular dynamics thermal conductivity predictions
    Sellan, D. P.
    Landry, E. S.
    Turney, J. E.
    McGaughey, A. J. H.
    Amon, C. H.
    [J]. PHYSICAL REVIEW B, 2010, 81 (21)
  • [42] Molecular dynamics calculations of InSb nanowires thermal conductivity
    Cardozo, Giovano de Oliveira
    Rino, Jose Pedro
    [J]. JOURNAL OF MATERIALS SCIENCE, 2011, 46 (03) : 629 - 633
  • [43] Investigation the proton transport in highly hydrated Nafion membrane doping with SiO2 nanoparticles by molecular dynamics simulation
    Tai, Chung-Chieh
    Chen, Cheng-Lung
    Liu, Chuan-Wen
    Huang, Yu-Ren
    [J]. THIN SOLID FILMS, 2018, 660 : 802 - 807
  • [44] Enhanced Ionic Conductivity of Composite PVA-Nafion Electrolyte Containing Ionic Liquid by Addition of Hydroxyapatite Particle
    Li, Zhiying
    Zhang, Xin
    Zhou, Changli
    Sun, Danzi
    [J]. POLYMERS & POLYMER COMPOSITES, 2012, 20 (04) : 407 - 409
  • [45] A new force field for molecular dynamics studies of Li+ and Na+-nafion
    Soolo, Endel
    Liivat, Anti
    Kasemagi, Heiki
    Tamm, Tarmo
    Brandell, Daniel
    Aablooa, Alvo
    [J]. ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD) 2008, 2008, 6927
  • [46] Molecular dynamics simulation of Keggin HPA doped Nafion® 117 as a polymer electrolyte membrane
    Akbari, S.
    Mosavian, M. T. Hamed
    Moosavi, F.
    Ahmadpour, A.
    [J]. RSC ADVANCES, 2017, 7 (70): : 44537 - 44546
  • [47] ATOMISTIC MODELING OF CONDUCTION AND TRANSPORT PROCESSES IN MICRO-POROUS ELECTRODES CONTAINING NAFION ELECTROLYTES
    Zhou, Xiangyang
    [J]. MNHMT2009, VOL 2, 2010, : 253 - 258
  • [48] MOLECULAR DYNAMICS CALCULATIONS OF THE THERMAL CONDUCTIVITY OF MOLECULAR LIQUIDS, POLYMERS, AND CARBON NANOTUBES
    Algaer, Elena A.
    Mueller-Plathe, Florian
    [J]. SOFT MATERIALS, 2012, 10 (1-3) : 42 - 80
  • [49] Molecular Dynamics Study of Complex Dopant Electrolyte Nd2-xHoxZr2O7: Structure, Conductivity, and Thermal Expansion
    Razmkhah, M.
    Mosavian, M. T. Hamed
    Moosavi, F.
    [J]. FUEL CELLS, 2013, 13 (06) : 1048 - 1055
  • [50] The structural and ionic conductivity analysis of poly(ethylene oxide)/LiTFSI/MOF-5 nanocomposite electrolytes by using molecular dynamics simulations
    Ozlek, Murat
    Burgaz, Engin
    Inanc, Ibrahim
    Andac, Muberra
    [J]. IONICS, 2022, 28 (07) : 3255 - 3268