Molecular Dynamics Modeling of the Conductivity of Lithiated Nafion Containing Nonaqueous Solvents

被引:15
作者
Burlatsky, Sergei [1 ]
Darling, Robert M. [1 ]
Novikov, Dmitri [1 ]
Atrazhev, Vadim V. [2 ,3 ]
Sultanov, Vadim I. [3 ]
Astakhova, Tatiana Y. [2 ,3 ]
Su, Liang [4 ]
Brushett, Fikile [4 ]
机构
[1] United Technol Res Ctr, E Hartford, CT 06108 USA
[2] Russian Acad Sci, Inst Biochem Phys, Moscow 119334, Russia
[3] Sci Technol LLC, Moscow 119334, Russia
[4] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
关键词
IONIC-CONDUCTIVITY; POLYMER ELECTROLYTE; DIMETHYL-SULFOXIDE; PROTON TRANSPORT; WATER-UPTAKE; FORCE-FIELD; LITHIUM ION; SIMULATION; MEMBRANE; METHANOL;
D O I
10.1149/2.0461610jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
We use molecular dynamics to predict the ionic conductivities of lithiated Nafion perfluorinated ionomeric membranes swelled in dimethyl sulfoxide (DMSO) and acetonitrile (ACN). The experimental conductivity of lithiated Nafion swollen with DMSO is two orders of magnitude higher than with ACN. Conversely, the mobility of Li+ ions in a solution of LiPF6 in ACN is approximately six times higher than in DMSO. In this work, we demonstrate that the ionic conductivity of Nafion is substantially governed by the concentration of free Li+ ions, i.e. by the degree of dissociation of the Li+ and SO3- pairs, and that the inherent mobility of Li+ in different solvents is of secondary importance. (C) The Author(s) 2016. Published by ECS. All rights reserved.
引用
收藏
页码:A2232 / A2239
页数:8
相关论文
共 50 条
  • [1] Solvation and sodium conductivity of nonaqueous polymer electrolytes based on Nafion-117 membranes and polar aprotic solvents
    Voropaeva, D. Yu
    Novikova, S. A.
    Kulova, T. L.
    Yaroslavtsev, A. B.
    SOLID STATE IONICS, 2018, 324 : 28 - 32
  • [2] Molecular Modeling of Structure and Dynamics of Nafion Protonation States
    Sengupta, Soumyadipta
    Lyulin, Alexey, V
    JOURNAL OF PHYSICAL CHEMISTRY B, 2019, 123 (31) : 6882 - 6891
  • [3] Conductivity of Nafion-117 membranes intercalated by polar aprotonic solvents
    Voropaeva, D. Yu.
    Novikova, S. A.
    Kulova, T. L.
    Yaroslavtsev, A. B.
    IONICS, 2018, 24 (06) : 1685 - 1692
  • [4] Modeling of ion conductivity in Nafion membranes
    Yang Z.
    Peng X.
    Wang B.
    Duan Y.
    Lee D.
    Frontiers of Energy and Power Engineering in China, 2007, 1 (1): : 58 - 66
  • [5] Modelling the Nafion® diffraction profile by molecular dynamics simulation
    Brandell, Daniel
    Karo, Jaanus
    Thomas, John O.
    JOURNAL OF POWER SOURCES, 2010, 195 (18) : 5962 - 5965
  • [6] Lithium-ion conductivity of the Nafion membrane swollen in organic solvents
    E. A. Sanginov
    E. Yu. Evshchik
    R. R. Kayumov
    Yu. A. Dobrovol’skii
    Russian Journal of Electrochemistry, 2015, 51 : 986 - 990
  • [7] Conductivity of Nafion-117 membranes intercalated by polar aprotonic solvents
    D. Yu. Voropaeva
    S. A. Novikova
    T. L. Kulova
    A. B. Yaroslavtsev
    Ionics, 2018, 24 : 1685 - 1692
  • [8] Lithium-ion conductivity of the Nafion membrane swollen in organic solvents
    Sanginov, E. A.
    Evshchik, E. Yu.
    Kayumov, R. R.
    Dobrovol'skii, Yu. A.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2015, 51 (10) : 986 - 990
  • [9] Molecular dynamic study of subtilisin Carlsberg in aqueous and nonaqueous solvents
    Cruz, Anthony
    Ramirez, Eunice
    Santana, Alberto
    Barletta, Gabriel
    Lopez, Gustavo E.
    MOLECULAR SIMULATION, 2009, 35 (03) : 205 - 212
  • [10] Molecular Dynamics Simulations on O2 Permeation through Nafion lonomer on Platinum Surface
    Jinnouchi, Ryosuke
    Kudo, Kenji
    Kitano, Naoki
    Morimoto, Yu
    ELECTROCHIMICA ACTA, 2016, 188 : 767 - 776