A co-expression gene network associated with developmental regulation of apple fruit acidity

被引:26
作者
Bai, Yang [1 ]
Dougherty, Laura [1 ]
Cheng, Lailiang [2 ]
Xu, Kenong [1 ]
机构
[1] Cornell Univ, New York State Agr Expt Stn, Sch Integrat Plant Sci, Hort Sect, Geneva, NY 14456 USA
[2] Cornell Univ, Sch Integrat Plant Sci, Hort Sect, Ithaca, NY USA
基金
美国食品与农业研究所;
关键词
Apple; Developing fruit; Acidity; Transcriptome; RNA-seq; Gene network; ALUMINUM TOLERANCE; FUNCTIONAL ANNOTATION; APOPLASMIC PATHWAY; ORGANIC-ACID; MALATE; METABOLISM; PECTIN; MITOCHONDRIAL; ACCUMULATION; EXPRESSION;
D O I
10.1007/s00438-014-0986-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Apple fruit acidity, which affects the fruit's overall taste and flavor to a large extent, is primarily determined by the concentration of malic acid. Previous studies demonstrated that the major QTL malic acid (Ma) on chromosome 16 is largely responsible for fruit acidity variations in apple. Recent advances suggested that a natural mutation that gives rise to a premature stop codon in one of the two aluminum-activated malate transporter (ALMT)-like genes (called Ma1) is the genetic causal element underlying Ma. However, the natural mutation does not explain the developmental changes of fruit malate levels in a given genotype. Using RNA-seq data from the fruit of 'Golden Delicious' taken at 14 developmental stages from 1 week after full-bloom (WAF01) to harvest (WAF20), we characterized their transcriptomes in groups of high (12.2 +/- A 1.6 mg/g fw, WAF03-WAF08), mid (7.4 +/- A 0.5 mg/g fw, WAF01-WAF02 and WAF10-WAF14) and low (5.4 +/- A 0.4 mg/g fw, WAF16-WAF20) malate concentrations. Detailed analyses showed that a set of 3,066 genes (including Ma1) were expressed not only differentially (P (FDR) < 0.05) between the high and low malate groups (or between the early and late developmental stages) but also in significant (P < 0.05) correlation with malate concentrations. The 3,066 genes fell in 648 MapMan (sub-) bins or functional classes, and 19 of them were significantly (P (FDR) < 0.05) co-enriched or co-suppressed in a malate dependent manner. Network inferring using the 363 genes encompassed in the 19 (sub-) bins, identified a major co-expression network of 239 genes. Since the 239 genes were also differentially expressed between the early (WAF03-WAF08) and late (WAF16-WAF20) developmental stages, the major network was considered to be associated with developmental regulation of apple fruit acidity in 'Golden Delicious'.
引用
收藏
页码:1247 / 1263
页数:17
相关论文
共 66 条
[1]   Approaches for extracting practical information from gene co-expression networks in plant biology [J].
Aoki, Koh ;
Ogata, Yoshiyuki ;
Shibata, Daisuke .
PLANT AND CELL PHYSIOLOGY, 2007, 48 (03) :381-390
[2]   Computing topological parameters of biological networks [J].
Assenov, Yassen ;
Ramirez, Fidel ;
Schelhorn, Sven-Eric ;
Lengauer, Thomas ;
Albrecht, Mario .
BIOINFORMATICS, 2008, 24 (02) :282-284
[3]   Differential expression in SAGE: accounting for normal between-library variation [J].
Baggerly, KA ;
Deng, L ;
Morris, JS ;
Aldaz, CM .
BIOINFORMATICS, 2003, 19 (12) :1477-1483
[4]   Towards an improved apple reference transcriptome using RNA-seq [J].
Bai, Yang ;
Dougherty, Laura ;
Xu, Kenong .
MOLECULAR GENETICS AND GENOMICS, 2014, 289 (03) :427-438
[5]   A natural mutation-led truncation in one of the two aluminum-activated malate transporter-like genes at the Ma locus is associated with low fruit acidity in apple [J].
Bai, Yang ;
Dougherty, Laura ;
Li, Mingjun ;
Fazio, Gennaro ;
Cheng, Lailiang ;
Xu, Kenong .
MOLECULAR GENETICS AND GENOMICS, 2012, 287 (08) :663-678
[6]   Anion Channels/Transporters in Plants: From Molecular Bases to Regulatory Networks [J].
Barbier-Brygoo, Helene ;
De Angeli, Alexis ;
Filleur, Sophie ;
Frachisse, Jean-Marie ;
Gambale, Franco ;
Thomine, Sebastien ;
Wege, Stefanie .
ANNUAL REVIEW OF PLANT BIOLOGY, VOL 62, 2011, 62 :25-51
[7]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[8]   Carbohydrate metabolism in two apple genotypes that differ in malate accumulation [J].
Berüter, J .
JOURNAL OF PLANT PHYSIOLOGY, 2004, 161 (09) :1011-1029
[9]   FRUIT PHOTOSYNTHESIS [J].
BLANKE, MM ;
LENZ, F .
PLANT CELL AND ENVIRONMENT, 1989, 12 (01) :31-46
[10]   Integration of biological networks and gene expression data using Cytoscape [J].
Cline, Melissa S. ;
Smoot, Michael ;
Cerami, Ethan ;
Kuchinsky, Allan ;
Landys, Nerius ;
Workman, Chris ;
Christmas, Rowan ;
Avila-Campilo, Iliana ;
Creech, Michael ;
Gross, Benjamin ;
Hanspers, Kristina ;
Isserlin, Ruth ;
Kelley, Ryan ;
Killcoyne, Sarah ;
Lotia, Samad ;
Maere, Steven ;
Morris, John ;
Ono, Keiichiro ;
Pavlovic, Vuk ;
Pico, Alexander R. ;
Vailaya, Aditya ;
Wang, Peng-Liang ;
Adler, Annette ;
Conklin, Bruce R. ;
Hood, Leroy ;
Kuiper, Martin ;
Sander, Chris ;
Schmulevich, Ilya ;
Schwikowski, Benno ;
Warner, Guy J. ;
Ideker, Trey ;
Bader, Gary D. .
NATURE PROTOCOLS, 2007, 2 (10) :2366-2382