Molecular Dynamics Simulations of Asphaltenes at the Oil-Water Interface: From Nanoaggregation to Thin-Film Formation

被引:161
|
作者
Mikami, Yohei [1 ]
Liang, Yunfeng [1 ]
Matsuoka, Toshifumi [1 ]
Boek, Edo S. [2 ]
机构
[1] Kyoto Univ, Kyoto 6158540, Japan
[2] Univ London Imperial Coll Sci Technol & Med, Dept Chem Engn, London SW7 2AZ, England
关键词
CAPILLARY-FLOW; CRUDE-OIL; AGGREGATION; MODEL; REPRESENTATION; OPTIMIZATION; DEPOSITION; STABILITY; EMULSIONS; HEPTANE;
D O I
10.1021/ef301610q
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
We have investigated the interfacial behavior of asphaltene molecules at the oil water interface using molecular dynamics simulations. Oil precipitants and solvents are represented by heptane and toluene, respectively. It was found that asphaltenes are preferably distributed in the oil phase in the case of pure toluene, whereas they accumulate at the oil-water interface for pure heptane. Interestingly, the interfacial tension (IFT) of the interfacial system containing a small amount of asphaltene molecules is close to that of a pure heptane-water system, while the IFT of the system containing a large amount of asphaltene molecules is much reduced, similar to 12 mN/m. Further, it was shown that the reduced IFT results from a complete asphaltene film formed at the oil-water interface when asphaltenes are abundant. In addition, it was found that a small amount of asphaltene molecules stacked their aromatic planes and formed a nanoscale aggregate, which exhibited an exotic molecular oscillation behavior of asphaltene molecules at the oil-water interface.
引用
收藏
页码:1838 / 1845
页数:8
相关论文
共 50 条
  • [41] Role of the porphyrins and demulsifiers in the aggregation process of asphaltenes at water/oil interfaces under desalting conditions: a molecular dynamics study
    Silva, H. Santos
    Alfarra, A.
    Vallverdu, G.
    Begue, D.
    Bouyssiere, B.
    Baraille, I
    PETROLEUM SCIENCE, 2020, 17 (03) : 797 - 810
  • [42] Specificity and Synergy at the Oil-Brine Interface: New Insights from Experiments and Molecular Dynamics Simulations
    Abdel-Azeim, Safwat
    Sakthivel, Sivabalan
    Kandiel, Tarek A.
    Kanj, Mazen Y.
    ENERGY & FUELS, 2021, 35 (18) : 14647 - 14657
  • [43] Asphaltene Subfractions Responsible for Stabilizing Water-in-Crude Oil Emulsions. Part 2: Molecular Representations and Molecular Dynamics Simulations
    Yang, Fan
    Tchoukov, Plamen
    Dettman, Heather
    Teklebrhan, Robel B.
    Liu, Lan
    Dabros, Tadeusz
    Czarnecki, Jan
    Masliyah, Jacob
    Xu, Zhenghe
    ENERGY & FUELS, 2015, 29 (08) : 4783 - 4794
  • [44] Polarizability effects in molecular dynamics simulations of the graphene-water interface
    Ho, Tuan A.
    Striolo, Alberto
    JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (05)
  • [45] MOLECULAR-DYNAMICS SIMULATIONS OF MODEL OIL/WATER/SURFACTANT SYSTEMS
    ESSELINK, K
    HILBERS, PAJ
    VANOS, NM
    SMIT, B
    KARABORNI, S
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 1994, 91 : 155 - 167
  • [46] Molecular Dynamics simulations of Cu/Ta and Ta/Cu thin film growth
    Klaver, TPC
    Thijsse, BJ
    JOURNAL OF COMPUTER-AIDED MATERIALS DESIGN, 2003, 10 (02): : 61 - 74
  • [47] Constructing a viscoelastic film for enhanced oil recovery via self-adsorption of amphiphilic nanosheets at oil-water interface
    Liang, Tuo
    Wen, Yuchen
    Qu, Ming
    Yang, Changhua
    Wu, Weipeng
    Ma, Tao
    Raj, Infant
    Hou, Jirui
    JOURNAL OF MOLECULAR LIQUIDS, 2024, 394
  • [48] Interfacial shear rheology of asphaltenes at oil-water interface and its relation to emulsion stability: Influence of concentration, solvent aromaticity and nonionic surfactant
    Fan, Yanru
    Simon, Sebastien
    Sjoblom, Johan
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2010, 366 (1-3) : 120 - 128
  • [49] Study on the Behavior of Saturated Cardanol-Based Surfactants at the Crude Oil/Water Interface through Molecular Dynamics Simulations
    Lu, Congying
    Liu, Weiyang
    Yuan, Zhenyu
    Wang, Ling
    Zhang, Zuxi
    Gao, Qinghe
    Ding, Wei
    JOURNAL OF PHYSICAL CHEMISTRY B, 2023, 127 (41) : 8938 - 8949
  • [50] The charged interface between Pt and water: First principles molecular dynamics simulations
    Ikeshoji, Tamio
    Otani, Minoru
    Hamada, Ikutaro
    Sugino, Osamu
    Morikawa, Yoshitada
    Okamoto, Yasuharu
    Qian, Yumin
    Yagi, Ichizo
    AIP ADVANCES, 2012, 2 (03):