The released polysaccharide inhibits cell aggregation and biofilm formation in the cyanobacterium Synechocystis sp. PCC 6803

被引:7
|
作者
Li, Jing [1 ]
Fang, Daoyan [1 ]
Ye, Rumeng [1 ]
Zhou, Changfang [1 ]
Li, Pengfu [1 ]
机构
[1] Nanjing Univ, Sch Life Sci, State Key Lab Pharmaceut Biotechnol, Nanjing 210023, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Biofilm formation; cell aggregation; cell hydrophobicity; cell surface charge; cyanobacterium; emulsification activity; exopolysaccharide; Synechocystis; EXTRACELLULAR POLYSACCHARIDE; MICROBIAL-DEGRADATION; EXOPOLYSACCHARIDES; HYDROPHOBICITY; MICROALGAE; SUGARS;
D O I
10.1080/09670262.2020.1777469
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Cyanobacteria secrete exopolysaccharide (EPS), which can be intimately associated with the cell surfaces (known as capsular polysaccharide, CPS), or released into the surrounding environment (released polysaccharide, RPS). The aim of this study was to explore the role of EPS in cell aggregation and biofilm formation in the unicellular cyanobacteriumSynechocystissp. strain PCC 6803. Three mutants (Delta sll5043, Delta slr1063and Delta slr1076) were obtained through disrupting three putative glycosyltransferase genes (sll5043,slr1063andslr1076) separately. Decreased contents and altered monosaccharide composition of both RPS and CPS were observed in the three mutants compared with the wild type (WT). RPS from the WT (WT-RPS) had high emulsification activity, while RPSs from the mutants had no emulsification activity. Unlike the WT, the three mutants formed cell aggregates and biofilms. Compared with the WT, the three mutants possessed lower cell hydrophobicity and less negative cell surface charge, which could result from the altered production of CPS. 40 mu g ml(-1)WT-RPS significantly decreased cell hydrophobicity of the three mutants, and significantly inhibited cell aggregation and biofilm formation, while the RPS from each mutant itself had no effect on cell hydrophobicity of the mutant, and did not affect cell aggregation and biofilm formation. The inhibitory effect of WT-RPS on cell aggregation and biofilm formation was thus suggested to be related to its ability to reduce cell hydrophobicity. The difference in cell aggregation and biofilm formation between the WT and the three mutants could be related to differences in cell hydrophobicity, cell surface charge and physicochemical properties of RPS. Our results in this study indicated that both CPS and RPS affected cell aggregation and biofilm formation inSynechocystissp. strain PCC 6803, and WT-RPS inhibited cell aggregation and biofilm formation.
引用
收藏
页码:119 / 128
页数:10
相关论文
共 50 条
  • [1] Thioredoxin peroxidase in the Cyanobacterium Synechocystis sp. PCC 6803
    Yamamoto, H
    Miyake, C
    Dietz, KJ
    Tomizawa, KI
    Murata, N
    Yokota, A
    FEBS LETTERS, 1999, 447 (2-3): : 269 - 273
  • [2] Biosynthesis of arsenolipids by the cyanobacterium Synechocystis sp. PCC 6803
    Xue, Xi-Mei
    Raber, Georg
    Foster, Simon
    Chen, Song-Can
    Francesconi, Kevin A.
    Zhu, Yong-Guan
    ENVIRONMENTAL CHEMISTRY, 2014, 11 (05) : 506 - 513
  • [3] Effect of Gravity Changes on the Cyanobacterium Synechocystis sp. PCC 6803
    N. Erdmann
    U. Effmert
    S. Fulda
    S. Oheim
    Current Microbiology, 1997, 35 : 348 - 355
  • [4] Effect of gravity changes on the cyanobacterium Synechocystis sp. PCC 6803
    Erdmann, N
    Effmert, U
    Fulda, S
    Oheim, S
    CURRENT MICROBIOLOGY, 1997, 35 (06) : 348 - 355
  • [5] Astaxanthin production in a model cyanobacterium Synechocystis sp. PCC 6803
    Shimada, Naoya
    Okuda, Yukiko
    Maeda, Kaisei
    Umeno, Daisuke
    Takaichi, Shinichi
    Ikeuchi, Masahiko
    JOURNAL OF GENERAL AND APPLIED MICROBIOLOGY, 2020, 66 (02): : 116 - 120
  • [6] Quinol and cytochrome oxidases in the cyanobacterium Synechocystis sp. PCC 6803
    Howitt, CA
    Vermaas, WFJ
    BIOCHEMISTRY, 1998, 37 (51) : 17944 - 17951
  • [7] Phototactic motility in the unicellular cyanobacterium Synechocystis sp. PCC 6803
    Shizue Yoshihara
    Masahiko Ikeuchi
    Photochemical & Photobiological Sciences, 2004, 3 : 512 - 518
  • [8] Factors Controlling Floc Formation and Structure in the Cyanobacterium Synechocystis sp. Strain PCC 6803
    Conradi, Fabian D.
    Zhou, Rui-Qian
    Oeser, Sabrina
    Schuergers, Nils
    Wilde, Annegret
    Mullineaux, Conrad W.
    JOURNAL OF BACTERIOLOGY, 2019, 201 (19)
  • [9] Characterisation of an opcA Mutant of the Unicellular Cyanobacterium Synechocystis sp. PCC 6803
    Kübra Özkul
    Haydar Karakaya
    Current Microbiology, 2015, 71 : 572 - 578
  • [10] Enhancing the production of chlorophyll f in the cyanobacterium Synechocystis sp. PCC 6803
    Qi, Man
    Taunt, Henry N.
    Beckova, Martina
    Xia, Zhi
    Trinugroho, Joko P.
    Komenda, Josef
    Nixon, Peter J.
    PHYSIOLOGIA PLANTARUM, 2025, 177 (02)