The Entropy of Conditional Markov Trajectories

被引:14
作者
Kafsi, Mohamed [1 ]
Grossglauser, Matthias [1 ]
Thiran, Patrick [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Sch Comp & Commun Sci, CH-1015 Lausanne, Switzerland
关键词
Entropy; Markov chains (MC); Markov trajectories;
D O I
10.1109/TIT.2013.2262497
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To quantify the randomness of Markov trajectories with fixed initial and final states, Ekroot and Cover proposed a closed-form expression for the entropy of trajectories of an irreducible finite state Markov chain. Numerous applications, including the study of random walks on graphs, require the computation of the entropy of Markov trajectories conditional on a set of intermediate states. However, the expression of Ekroot and Cover does not allow for computing this quantity. In this paper, we propose a method to compute the entropy of conditional Markov trajectories through a transformation of the original Markov chain into a Markov chain that exhibits the desired conditional distribution of trajectories. Moreover, we express the entropy of Markov trajectories-a global quantity-as a linear combination of local entropies associated with the Markov chain states.
引用
收藏
页码:5577 / 5583
页数:7
相关论文
共 10 条
  • [1] [Anonymous], 2008, P 14 SIGKDD INT C KN
  • [2] Localization of the Maximal Entropy Random Walk
    Burda, Z.
    Duda, J.
    Luck, J. M.
    Waclaw, B.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (16)
  • [3] Cover T.M., 2006, ELEMENTS INFORM THEO, V2nd ed
  • [4] PROBABILISTIC MULTIPATH TRAFFIC ASSIGNMENT MODEL WHICH OBVIATES PATH ENUMERATION
    DIAL, RB
    [J]. TRANSPORTATION RESEARCH, 1971, 5 (02): : 83 - &
  • [5] THE ENTROPY OF MARKOV TRAJECTORIES
    EKROOT, L
    COVER, TM
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (04) : 1418 - 1421
  • [6] Golub G., 2013, J HOPKINS STUDIES MA
  • [7] Kemeny J., 1969, Finite Markov chains
  • [8] COMPLEXITY AS THERMODYNAMIC DEPTH
    LLOYD, S
    PAGELS, H
    [J]. ANNALS OF PHYSICS, 1988, 188 (01) : 186 - 213
  • [9] Randomized Shortest-Path Problems: Two Related Models
    Saerens, Marco
    Achbany, Youssef
    Fouss, Francois
    Yen, Luh
    [J]. NEURAL COMPUTATION, 2009, 21 (08) : 2363 - 2404
  • [10] Stewart W. J., 2009, Probability, Markov chains, queues and simulation