Hand Segmentation using Modified K-Means Clustering with Depth Information and Adaptive Thresholding by Histogram Analysis

被引:0
作者
Trivedi, Sheifalee [1 ]
Khunteta, Dinesh Kumar [1 ]
Narayan, Satya [1 ]
机构
[1] Govt Engn Coll, Comp Sci Dept, Ajmer, India
来源
2017 IEEE INTERNATIONAL CONFERENCE ON POWER, CONTROL, SIGNALS AND INSTRUMENTATION ENGINEERING (ICPCSI) | 2017年
关键词
Hand segmentation; Hand area; Adaptive threshold; Clustering; K-Mean;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we present a methodology for segmentation of hand images using modified K-means clustering with depth information of an image and adaptive thresholding by histogram analysis. We extract the hand area by using K -means clustering to divide image into different clusters based upon its intensity value. Thus we can say suggested methodology will give desired results for segmentation of hand images in different conditions like hand color, scale, rotation, pose, lightning conditions and colored background.
引用
收藏
页码:1607 / 1609
页数:3
相关论文
共 9 条
[1]  
Alvarez S., 2010, TCDCS201034
[2]  
[Anonymous], 2012, THESIS EWHA WOMANS U
[3]  
[Anonymous], Digital Image Processing
[4]  
Baggio D. L., 2012, MASTERING OPENCV PRA
[5]  
Fayyaz R., 2012, P 37 C KOR INF PROC, V19, P436
[6]  
Fayyaz Rabia, 2014, J KOREA MULTIMEDIA S, V17
[7]  
Kang SI, 2011, IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE 2011), P155, DOI 10.1109/ICCE.2011.5722513
[8]  
Lihui Chen, 2005, IEE International Conference on Visual Information Engineering (VIE 2005) (CP No.509), P195, DOI 10.1049/cp:20050090
[9]  
Powar V., 2011, P INT C COMP INT