Optimal uncertainty relations in a modified Heisenberg algebrah

被引:14
作者
Abdelkhalek, Kais [1 ]
Chemissany, Wissam [1 ,2 ]
Fiedler, Leander [1 ]
Mangano, Gianpiero [3 ]
Schwonnek, Rene [1 ]
机构
[1] Leibniz Univ Hannover, Inst Theoret Phys, D-30167 Hannover, Niedersachsen, Germany
[2] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[3] Complesso Univ Monte St Angelo, Sez Napoli, Ist Nazl Fis Nucl, I-80126 Naples, Italy
来源
PHYSICAL REVIEW D | 2016年 / 94卷 / 12期
基金
欧洲研究理事会;
关键词
SPHEROIDAL WAVE-FUNCTIONS; QUANTUM-MECHANICS; FOURIER-ANALYSIS; PLANCK-SCALE; LENGTH; ENTROPY; PRINCIPLE; SPACETIME; PHYSICS; TIME;
D O I
10.1103/PhysRevD.94.123505
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Various theories that aim at unifying gravity with quantum mechanics suggest modifications of the Heisenberg algebra for position and momentum. From the perspective of quantum mechanics, such modifications lead to new uncertainty relations that are thought (but not proven) to imply the existence of a minimal observable length. Herewe prove this statement in a framework of sufficient physical and structural assumptions. Moreover, we present a general method that allows us to formulate optimal and state-independent variance-based uncertainty relations. In addition, instead of variances, wemake use of entropies as a measure of uncertainty and provide uncertainty relations in terms of min and Shannon entropies. We compute the corresponding entropicminimal lengths and find that theminimal length in terms ofmin entropy is exactly 1 bit.
引用
收藏
页数:20
相关论文
共 69 条
[1]   Optimality of entropic uncertainty relations [J].
Abdelkhalek, Kais ;
Schwonnek, Rene ;
Maassen, Hans ;
Furrer, Fabian ;
Duhme, Joerg ;
Raynal, Philippe ;
Englert, Berthold-Georg ;
Werner, Reinhard F. .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2015, 13 (06)
[2]   TIME IN QUANTUM THEORY AND UNCERTAINTY RELATION FOR TIME AND ENERGY [J].
AHARONOV, Y ;
BOHM, D .
PHYSICAL REVIEW, 1961, 122 (05) :1649-&
[3]  
Aharonov Y, 2005, QUANTUM PARADOXES: QUANTUM THEORY FOR THE PERPLEXED
[4]  
AKHIEZER NI, 1963, THEORY LINEAR OPERAT
[5]   CAN SPACETIME BE PROBED BELOW THE STRING SIZE [J].
AMATI, D ;
CIAFALONI, M ;
VENEZIANO, G .
PHYSICS LETTERS B, 1989, 216 (1-2) :41-47
[6]   GEOMETRY OF QUANTUM EVOLUTION [J].
ANANDAN, J ;
AHARONOV, Y .
PHYSICAL REVIEW LETTERS, 1990, 65 (14) :1697-1700
[7]  
[Anonymous], ARXIVGRQC9310026
[8]  
[Anonymous], 2012, GRADUATE TEXTS MATH
[9]  
[Anonymous], 1927, Z. Phys. A, DOI [10.1007/bf01391200, DOI 10.1007/BF01391200]
[10]  
[Anonymous], METHODS MODERN MATH