Coercivity enhancement of FePt thin films coated with a monolayer array of γ-Fe2O3 nanoparticles

被引:1
|
作者
Yi, Dong Kee [1 ]
Zafiropoulou, Irene [2 ]
Papaefthymiou, Georgia C. [3 ]
机构
[1] Gachon Univ, Gachon Bionano Inst, Div Bionanotechnol, Songnam 461701, South Korea
[2] NCSR Demokritos, Inst Mat Sci, Athens, Greece
[3] Villanova Univ, Dept Phys, Villanova, PA 19085 USA
关键词
Iron oxide; Nanoparticles; Langmuir-Blodgett method; Iron platinum; Magnetization; Coercivity; Colloidal array; MAGNETIC-PROPERTIES; CRYSTALLINE; FABRICATION;
D O I
10.1016/j.tsf.2012.08.020
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report on a two-dimensional magnetic nanocomposite material consisting of a monolayer of similar to 11 nm diameter colloidal gamma-Fe2O3 nanoparticles arrayed by the Langmuir-Blodgett method over a similar to 3 nm thin film of FePt deposited on a glass slide substrate, thus exploiting the advantages of both thin film fabrication and chemical synthesis. The FePt film was obtained by magnetron sputtering of a FePt target, followed by vacuum annealing at 600 degrees C. FePt magnetic polarization perpendicular to the film plane was observed. The parallel to the plane hysteresis loops are dominated by the diamagnetic glass substrate. The perpendicular to the plane hysteresis loops are highly square with a coercivity of 4.87x10(6)/4 pi (A/m), which upon deposition of the monolayer array of gamma-Fe2O3 nanoparticles increases to 6.31x10(6)/4 pi (A/m). (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:376 / 380
页数:5
相关论文
共 50 条
  • [21] Coercivity enhancement in γ-Fe2O3 particles dispersed at low-volume fraction
    Morales, MP
    Munoz-Aguado, MJ
    Garcia-Palacios, JL
    Lazaro, FJ
    Serna, CJ
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1998, 183 (1-2) : 232 - 240
  • [22] Features of the Pulsed Magnetization Switching in a High-Coercivity Material Based on ε-Fe2O3 Nanoparticles
    Popkov, S. I.
    Krasikov, A. A.
    Semenov, S. V.
    Dubrovskii, A. A.
    Yakushkin, S. S.
    Kirillov, V. L.
    Mart'yanov, O. N.
    Balaev, D. A.
    PHYSICS OF THE SOLID STATE, 2020, 62 (03) : 445 - 453
  • [23] Photoelectrochemical properties of Ni-doped Fe2O3 thin films prepared by electrodeposition
    Liu, Ying
    Yu, Yu-Xiang
    Zhang, Wei-De
    ELECTROCHIMICA ACTA, 2012, 59 : 121 - 127
  • [24] Features of the Pulsed Magnetization Switching in a High-Coercivity Material Based on ε-Fe2O3 Nanoparticles
    S. I. Popkov
    A. A. Krasikov
    S. V. Semenov
    A. A. Dubrovskii
    S. S. Yakushkin
    V. L. Kirillov
    O. N. Mart’yanov
    D. A. Balaev
    Physics of the Solid State, 2020, 62 : 445 - 453
  • [25] Reduced surface spin disorder in ZrO2 coated γ-Fe2O3 nanoparticles
    Zeb, F.
    Khan, M. Shoaib
    Nadeem, K.
    Kamran, M.
    Abbas, H.
    Krenn, H.
    Szabo, D., V
    SOLID STATE COMMUNICATIONS, 2018, 284 : 69 - 74
  • [26] Investigating Exchange Bias and Coercivity in Fe3O4-γ-Fe2O3 Core-Shell Nanoparticles of Fixed Core Diameter and Variable Shell Thicknesses
    Obaidat, Ihab M.
    Nayek, Chiranjib
    Manna, Kaustuv
    Bhattacharjee, Gourab
    Al-Omari, Imaddin A.
    Gismelseed, Abbasher
    NANOMATERIALS, 2017, 7 (12)
  • [27] Al2O3/Fe2O3 composite-coated polyhedral Fe nanoparticles prepared by arc discharge
    Shi, GM
    Zhang, ZD
    Yang, HC
    JOURNAL OF ALLOYS AND COMPOUNDS, 2004, 384 (1-2) : 296 - 299
  • [28] High room temperature coercivity from α-Fe2O3 nanoparticles embedded in silica
    Masina, C. J.
    Chithwayo, A. E.
    Moyo, T.
    Dlamini, S.
    Wamwangi, D.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2024, 610
  • [29] Simple Fabrication of ε-Fe2O3 Nanoparticles Containing Silica Monoliths with Enhanced Coercivity
    Altenschmidt, Laura
    Beaunier, Patricia
    Bordage, Amelie
    Riviere, Eric
    Fornasieri, Giulia
    Bleuzen, Anne
    CHEMNANOMAT, 2023, 9 (02)
  • [30] Characterization of γ-Fe2O3 nanoparticles prepared by transformation of α-FeOOH
    Miao Hua
    Li Jian
    Lin YueQiang
    Liu XiaoDong
    Zhang QingMei
    Fu Jun
    CHINESE SCIENCE BULLETIN, 2011, 56 (22): : 2383 - 2388