Intrinsically stretchable and healable semiconducting polymer for organic transistors

被引:1167
作者
Oh, Jin Young [1 ]
Rondeau-Gagne, Simon [1 ,7 ]
Chiu, Yu-Cheng [1 ,8 ]
Chortos, Alex [1 ]
Lissel, Franziska [1 ]
Wang, Ging-Ji Nathan [1 ]
Schroeder, Bob C. [1 ,9 ,10 ]
Kurosawa, Tadanori [1 ]
Lopez, Jeffrey [1 ]
Katsumata, Toru [1 ,2 ]
Xu, Jie [1 ]
Zhu, Chenxin [3 ]
Gu, Xiaodan [1 ,4 ]
Bae, Won-Gyu [1 ]
Kim, Yeongin [3 ]
Jin, Lihua [5 ,11 ]
Chung, Jong Won [1 ,6 ]
Tok, Jeffrey B. -H. [1 ]
Bao, Zhenan [1 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] Asahi Kasei Corp, Performance Mat Technol Ctr, Corporate Res & Dev, 2-1 Samejima, Fuji, Shizuoka 4168501, Japan
[3] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[4] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA
[5] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA
[6] Samsung Adv Inst Technol, Suwon 443803, Gyeonggi Do, South Korea
[7] Univ Windsor, Dept Chem & Biochem, 401 Sunset Ave, Windsor, ON N9B 3P4, Canada
[8] Yuan Ze Univ, Dept Chem Engn & Mat Sci, Taoyuan 32003, Taiwan
[9] Queen Mary Univ London, Mat Res Inst, Mile End Rd, London E1 4NS, England
[10] Queen Mary Univ London, Sch Biol & Chem Sci, Mile End Rd, London E1 4NS, England
[11] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
SOLAR-CELLS; ELECTRONICS; DESIGN; RUBBER; FORCES; TOUGH; SKIN;
D O I
10.1038/nature20102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Thin-film field-effect transistors are essential elements of stretchable electronic devices for wearable electronics(1,2). All of the materials and components of such transistors need to be stretchable and mechanically robust(3,4). Although there has been recent progress towards stretchable conductors(5-8), the realization of stretchable semiconductors has focused mainly on strain-accommodating engineering of materials, or blending of nanofibres or nanowires into elastomers(9-11). An alternative approach relies on using semiconductors that are intrinsically stretchable, so that they can be fabricated using standard processing methods(12). Molecular stretchability can be enhanced when conjugated polymers, containing modified side-chains and segmented backbones, are infused with more flexible molecular building blocks(13,14). Here we present a design concept for stretchable semiconducting polymers, which involves introducing chemical moieties to promote dynamic non-covalent crosslinking of the conjugated polymers. These non-covalent crosslinking moieties are able to undergo an energy dissipation mechanism through breakage of bonds when strain is applied, while retaining high charge transport abilities. As a result, our polymer is able to recover its high field-effect mobility performance (more than 1 square centimetre per volt per second) even after a hundred cycles at 100 per cent applied strain. Organic thin-film field-effect transistors fabricated from these materials exhibited mobility as high as 1.3 square centimetres per volt per second and a high onfoff current ratio exceeding a million. The field-effect mobility remained as high as 1.12 square centimetres per volt per second at 100 per cent strain along the direction perpendicular to the strain. The field-effect mobility of damaged devices can be almost fully recovered after a solvent and thermal healing treatment. Finally, we successfully fabricated a skin-inspired stretchable organic transistor operating under deformations that might be expected in a wearable device.
引用
收藏
页码:411 / 415
页数:5
相关论文
共 30 条
[1]   Stretchable and self-healing polymers and devices for electronic skin [J].
Benight, Stephanie J. ;
Wang, Chao ;
Tok, Jeffrey B. H. ;
Bao, Zhenan .
PROGRESS IN POLYMER SCIENCE, 2013, 38 (12) :1961-1977
[2]  
Chen YL, 2012, NAT CHEM, V4, P467, DOI [10.1038/NCHEM.1314, 10.1038/nchem.1314]
[3]   Skin-inspired electronic devices [J].
Chortos, Alex ;
Bao, Zhenan .
MATERIALS TODAY, 2014, 17 (07) :321-331
[4]   Highly Stretchable Transistors Using a Microcracked Organic Semiconductor [J].
Chortos, Alex ;
Lim, Josh ;
To, John W. F. ;
Vosgueritchian, Michael ;
Dusseault, Thomas J. ;
Kim, Tae-Ho ;
Hwang, Sungwoo ;
Bao, Zhenan .
ADVANCED MATERIALS, 2014, 26 (25) :4253-4259
[5]   Self-healing and thermoreversible rubber from supramolecular assembly [J].
Cordier, Philippe ;
Tournilhac, Francois ;
Soulie-Ziakovic, Corinne ;
Leibler, Ludwik .
NATURE, 2008, 451 (7181) :977-980
[6]   Organic Semiconductors based on Dyes and Color Pigments [J].
Gsaenger, Marcel ;
Bialas, David ;
Huang, Lizhen ;
Stolte, Matthias ;
Wuerthner, Frank .
ADVANCED MATERIALS, 2016, 28 (19) :3615-3645
[7]   25th Anniversary Article: The Evolution of Electronic Skin (E-Skin): A Brief History, Design Considerations, and Recent Progress [J].
Hammock, Mallory L. ;
Chortos, Alex ;
Tee, Benjamin C-K ;
Tok, Jeffrey B-H ;
Bao, Zhenan .
ADVANCED MATERIALS, 2013, 25 (42) :5997-6037
[8]   Self-Healing Polymers via Supramolecular Forces [J].
Herbst, Florian ;
Doehler, Diana ;
Michael, Philipp ;
Binder, Wolfgang H. .
MACROMOLECULAR RAPID COMMUNICATIONS, 2013, 34 (03) :203-220
[9]   An ultra-lightweight design for imperceptible plastic electronics [J].
Kaltenbrunner, Martin ;
Sekitani, Tsuyoshi ;
Reeder, Jonathan ;
Yokota, Tomoyuki ;
Kuribara, Kazunori ;
Tokuhara, Takeyoshi ;
Drack, Michael ;
Schwoediauer, Reinhard ;
Graz, Ingrid ;
Bauer-Gogonea, Simona ;
Bauer, Siegfried ;
Someya, Takao .
NATURE, 2013, 499 (7459) :458-+
[10]   Ultrathin and lightweight organic solar cells with high flexibility [J].
Kaltenbrunner, Martin ;
White, Matthew S. ;
Glowacki, Eric D. ;
Sekitani, Tsuyoshi ;
Someya, Takao ;
Sariciftci, Niyazi Serdar ;
Bauer, Siegfried .
NATURE COMMUNICATIONS, 2012, 3