The problem of mutually unbiased bases in dimension 6

被引:9
作者
Jaming, Philippe [1 ]
Matolcsi, Mate [2 ,3 ]
Mora, Peter
机构
[1] Univ Orleans, Fac Sci, MAPMO Federat Denis Poisson, F-45067 Orleans 2, France
[2] Hungarian Acad Sci, Alfred Renyi Inst Math, H-1364 Budapest, Hungary
[3] BME Dept Anal, H-1111 Budapest, Hungary
来源
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES | 2010年 / 2卷 / 02期
关键词
Mutually unbiased bases; Complex Hadamard matrices;
D O I
10.1007/s12095-010-0023-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We outline a discretization approach to determine the maximal number of mutually unbiased bases in dimension 6. We describe the basic ideas and introduce the most important definitions to tackle this famous open problem which has been open for the last 10 years. Some preliminary results are also listed.
引用
收藏
页码:211 / 220
页数:10
相关论文
共 23 条
[1]   The mean king's problem: Spin 1 [J].
Aharonov, Y ;
Englert, BG .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2001, 56 (1-2) :16-19
[2]   A new proof for the existence of mutually unbiased bases [J].
Bandyopadhyay, S ;
Boykin, PO ;
Roychowdhury, V ;
Vatan, F .
ALGORITHMICA, 2002, 34 (04) :512-528
[3]   Orthogonal maximal abelian *-subalgebras of the 6x6 matrices [J].
Beauchamp, Kyle ;
Nicoara, Remus .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (8-9) :1833-1853
[4]   Quantum cryptography using larger alphabets [J].
Bechmann-Pasquinucci, H ;
Tittel, W .
PHYSICAL REVIEW A, 2000, 61 (06) :6
[5]   Mutually unbiased bases and Hadamard matrices of order six [J].
Bengtsson, Ingemar ;
Bruzda, Wojciech ;
Ericsson, Asa ;
Larsson, Jan-Ake ;
Tadej, Wojciech ;
Zyczkowski, Karol .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (05)
[6]  
Bennett C. H., 2014, Theoretical computer science, P175, DOI [DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
[7]  
Brierley S., 2008, ARXIV08081614QUANTPH
[8]  
Brierley S., 2009, ARXIV09014051
[9]  
Brierley S., 2009, ARXIV09074097
[10]   Numerical evidence for the maximum number of mutually unbiased bases in dimension six [J].
Butterley, Paul ;
Hall, William .
PHYSICS LETTERS A, 2007, 369 (1-2) :5-8