THE EXTRAGRADIENT METHOD FOR CONVEX OPTIMIZATION IN THE PRESENCE OF COMPUTATIONAL ERRORS

被引:1
作者
Zaslavski, Alexander J. [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词
Constrained optimization; Convex function; Extragradient method; Hilbert space; PROJECTED SUBGRADIENT METHOD; NONSMOOTH; CONVERGENCE; ALGORITHMS;
D O I
10.1080/01630563.2012.706769
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study convergence of the extragradient method for constrained convex minimization problems in a Hilbert space. Our goal is to obtain an epsilon-approximate solution of the problem in the presence of computational errors, where epsilon is a given positive number. Most results known in the literature establish convergence of optimization algorithms, when computational errors are summable. In this article, the convergence of the extragradient method for solving convex minimization problems is established for nonsummable computational errors. We show that the the extragradient method generates a good approximate solution, if the sequence of computational errors is bounded from above by a constant.
引用
收藏
页码:1399 / 1412
页数:14
相关论文
共 13 条
[1]  
Alber Y.I., 1997, J CONVEX ANAL, V4, P235
[2]   On the projected subgradient method for nonsmooth convex optimization in a Hilbert space [J].
Alber, YI ;
Iusem, AN ;
Solodov, MV .
MATHEMATICAL PROGRAMMING, 1998, 81 (01) :23-35
[3]  
Alber YI, 1971, USSR COMP MATH MATH, V11, P752
[4]   Hilbert-valued perturbed subgradient algorithms [J].
Barty, Kengy ;
Roy, Jean-Sebastien ;
Strugarek, Cyrille .
MATHEMATICS OF OPERATIONS RESEARCH, 2007, 32 (03) :551-562
[5]  
Burachik R., 1995, OPTIMIZATION, V32, P137, DOI [DOI 10.1080/02331939508844042, 10.1080/02331939508844042]
[6]  
Ermoliev Y. M., 1996, CYBERNETICS, V2, P1
[7]   Convergence of approximate and incremental subgradient methods for convex optimization [J].
Kiwiel, KC .
SIAM JOURNAL ON OPTIMIZATION, 2004, 14 (03) :807-840
[8]  
Korpelevich G. M., 1976, Ekon Mate Metody, V12, P747
[9]   Strong Convergence of Projected Subgradient Methods for Nonsmooth and Nonstrictly Convex Minimization [J].
Mainge, Paul-Emile .
SET-VALUED ANALYSIS, 2008, 16 (7-8) :899-912
[10]  
Polyak Boris T., 1987, Introduction to optimization: optimization software