A comprehensive study on the mechanism behind formation and depletion of Cu2ZnSnS4 (CZTS) phases

被引:43
作者
Ahmad, Rameez [1 ]
Brandl, Marco [2 ]
Distaso, Monica [1 ]
Herre, Patrick [1 ,3 ]
Spiecker, Erdmann [3 ]
Hock, Rainer [2 ]
Peukert, Wolfgang [1 ]
机构
[1] Univ Erlangen Nurnberg, Inst Particle Technol, D-91058 Erlangen, Germany
[2] Univ Erlangen Nurnberg, Chair Crystallog & Struct Phys, D-91058 Erlangen, Germany
[3] Univ Erlangen Nurnberg, Ctr Nanoanal & Electron Microscopy CENEM, D-91058 Erlangen, Germany
关键词
POPULATION BALANCE MODEL; NANOPARTICLES; NANOCRYSTALS; SIMULATION; CHALCOCITE; DJURLEITE; GROWTH; SIZE;
D O I
10.1039/c5ce00661a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High efficiency kesterite based solar cells have vigorously raised the research interests in this material. The challenge lies in understanding the formation and co-existence of more than 10 possible by-products during and after the synthesis of Cu2ZnSnS4 (CZTS) and their various different structural and electronic defects. The present contribution shows an in-depth study on the stages of formation and depletion of nanoparticulate CZTS. Employing a hot injection synthesis method, we give direct experimental evidence of the co-existence of cubic, tetragonal and defected CZTS structures and different by-products as a function of time and temperature. SEM, (HR) TEM, XRD, EDX, ICP-OES, Raman spectroscopy and UV-Vis-NIR spectroscopy have been used in order to better evaluate and interpret data for crystal structures and compositions. The obtained understanding on the formation of different phases suggests 250 degrees C as the most favourable synthesis temperature. Based on our study, general strategies can be developed for controlling the amount of formed phases, the by-products and the defects in kesterite and other similar multicomponent nanoparticles as well as in bulk systems.
引用
收藏
页码:6972 / 6984
页数:13
相关论文
共 56 条
[1]   Substitutional carbon doping of hexagonal multi-walled boron nitride nanotubes (h-MWBNNTs) via ion implantation [J].
Ahmad, Ishaq ;
Usman, M. ;
Naqvi, S. Rabab ;
Iqbal, Javed ;
Bo, Lu ;
Long, Yan ;
Dee, C. F. ;
Baig, Aslam .
JOURNAL OF NANOPARTICLE RESEARCH, 2013, 16 (01)
[2]   Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications [J].
Aldakov, Dmitry ;
Lefrancois, Aurelie ;
Reiss, Peter .
JOURNAL OF MATERIALS CHEMISTRY C, 2013, 1 (24) :3756-3776
[3]   A heating-up method for the synthesis of pure phase kesterite Cu2ZnSnS4 nanocrystals using a simple coordinating sulphur precursor [J].
An, Ping ;
Liang, Zhurong ;
Xu, Xueqing ;
Wang, Xin ;
Jin, Hu ;
Wang, Nan ;
Wang, Junxia ;
Zhu, Furong .
RSC ADVANCES, 2015, 5 (09) :6879-6885
[4]  
[Anonymous], ENERGY ENV SCI
[5]   Towards low-cost, environmentally friendly printed chalcopyrite and kesterite solar cells [J].
Azimi, Hamed ;
Hou, Yi ;
Brabec, Christoph J. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (06) :1829-1849
[6]  
Bohm M., 1985, PHYS TERNARY COMPOUN
[7]   In-situ X-ray diffraction analysis of the recrystallization process in Cu2ZnSnS4 nanoparticles synthesised by hot-injection [J].
Brandl, Marco ;
Ahmad, Rameez ;
Distaso, Monica ;
Azimi, Hamed ;
Hou, Yi ;
Peukert, Wolfgang ;
Brabec, Christoph J. ;
Hock, Rainer .
THIN SOLID FILMS, 2015, 582 :269-271
[8]   Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth-Abundant Solar Cell Absorbers [J].
Chen, Shiyou ;
Walsh, Aron ;
Gong, Xin-Gao ;
Wei, Su-Huai .
ADVANCED MATERIALS, 2013, 25 (11) :1522-1539
[9]   Wurtzite-derived polytypes of kesterite and stannite quaternary chalcogenide semiconductors [J].
Chen, Shiyou ;
Walsh, Aron ;
Luo, Ye ;
Yang, Ji-Hui ;
Gong, X. G. ;
Wei, Su-Huai .
PHYSICAL REVIEW B, 2010, 82 (19)
[10]   Imaging and phase identification of Cu2ZnSnS4 thin films using confocal Raman spectroscopy [J].
Cheng, A-J ;
Manno, M. ;
Khare, A. ;
Leighton, C. ;
Campbell, S. A. ;
Aydil, E. S. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2011, 29 (05)