Dehydration of FePO4•2H2O for the Synthesis of LiFePO4/C: Effect of Dehydration Temperature

被引:7
作者
Gongyan, Wuliang [1 ,2 ,3 ]
Li, Lingmeng [1 ,2 ,3 ]
Fang, Haisheng [1 ,2 ,3 ]
机构
[1] Kunming Univ Sci & Technol, Key Lab Adv Battery Mat Yunnan Prov, Kunming 650093, Yunnan, Peoples R China
[2] Kunming Univ Sci & Technol, Key Lab Nonferrous Met Vacuum Met Yunnan Prov, Kunming 650093, Yunnan, Peoples R China
[3] Kunming Univ Sci & Technol, Fac Met & Energy Engn, Kunming 650093, Yunnan, Peoples R China
来源
INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE | 2018年 / 13卷 / 03期
基金
中国国家自然科学基金;
关键词
Lithium ion batteries; Cathode materials; LiFePO4; FePO4 center dot 2H(2)O; Dehydration; LITHIUM ION BATTERIES; CATHODE MATERIALS; COMPOSITES; PHOSPHATE; SIZE; FEPO4;
D O I
10.20964/2018.03.72
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
To study the effect of dehydration temperature on synthesis and electrochemical performance of LiFePO4/C, FePO4 center dot 2H(2)O is dehydrated at different temperatures (200-700 degrees C) and the resulting FePO4 is adopted as a raw material to synthesize LiFePO4/C composite. The results show that FePO4 center dot 2H(2)O can be fully dehydrated at a temperature above 184 degrees C, the crystalline form, particle size and morphology of the dehydrated FePO4 varies with dehydration temperature, and the synthesized LiFePO4/C composites from these FePO4 have similar crystallinity, particle size and morphology, but have different electrochemical performance. Among all samples, the LiFePO4/C synthesized from the FePO4 dehydrated at 500 degrees C exhibits the best electrochemical performance. From these results, it is suggested that alpha-quartz FePO4 with a trigonal structure (P3(1)21) is an optimum form for efficient synthesis of high performance LiFePO4/C composite, and the dehydration of FePO4 center dot 2H(2)O should be controlled at a temperature around 500 degrees C.
引用
收藏
页码:2498 / 2508
页数:11
相关论文
共 27 条
[1]   Synthesis and phase transitions of iron phosphate [J].
Aliouane, N ;
Badeche, T ;
Gagou, Y ;
Nigrelli, E ;
Saint-Gregoire, P .
FERROELECTRICS, 2000, 241 (1-4) :255-262
[2]   Thermodynamics and kinetics of the dehydration reaction of FePO4•2H2O [J].
Boonchom, Banjong ;
Puttawong, Spote .
PHYSICA B-CONDENSED MATTER, 2010, 405 (09) :2350-2355
[3]   Laser-induced phase changes in olivine FePO4: a warning on characterizing LiFePO4-based cathodes with Raman spectroscopy [J].
Burba, Christopher M. ;
Palmer, Jasin M. ;
Holinsworth, Brian S. .
JOURNAL OF RAMAN SPECTROSCOPY, 2009, 40 (02) :225-228
[4]   Size effects on carbon-free LiFePO4 powders [J].
Delacourt, C. ;
Poizot, P. ;
Levasseur, S. ;
Masquelier, C. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (07) :A352-A355
[5]   Is small particle size more important than carbon coating?: An example study on LiFePO4 cathodes [J].
Gaberscek, Miran ;
Dominko, Robert ;
Jamnik, Janez .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (12) :2778-2783
[6]   Preparation and characterization of nano-particle LiFePO4 and LiFePO4/C by spray-drying and post-annealing method [J].
Gao, Fei ;
Tang, Zhiyuan ;
Xue, Hanjun .
ELECTROCHIMICA ACTA, 2007, 53 (04) :1939-1944
[7]  
Liu JL, 2013, INT J ELECTROCHEM SC, V8, P2378
[8]   Long-term cyclability of LiFePO4/carbon composite cathode material for lithium-ion battery applications [J].
Liu, Jing ;
Wang, Jiawei ;
Yan, Xuedong ;
Zhang, Xianfa ;
Yang, Guiling ;
Jalbout, Abraham F. ;
Wang, Rongshun .
ELECTROCHIMICA ACTA, 2009, 54 (24) :5656-5659
[9]   Synthesis of bowl-like mesoporous LiFePO4/C composites as cathode materials for lithium ion batteries [J].
Lv, Yi-Ju ;
Long, Yun-Fei ;
Su, Jing ;
Lv, Xiao-Yan ;
Wen, Yan-Xuan .
ELECTROCHIMICA ACTA, 2014, 119 :155-163
[10]   In situ synthesis and properties of carbon-coated LiFePO4 as Li-ion battery cathodes [J].
Mi, CH ;
Zhao, XB ;
Cao, GS ;
Tu, JP .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (03) :A483-A487