The crystal structure of MoO2(O2)(H2O)•H2O

被引:1
|
作者
Reid, Joel W. [1 ]
Kaduk, James A. [2 ]
Matei, Lidia [3 ]
机构
[1] Canadian Light Source, 44 Innovat Blvd, Saskatoon, SK S7N 2V3, Canada
[2] IIT, 3101 S Dearborn St, Chicago, IL 60616 USA
[3] Canadian Isotope Innovat Corp, 232-111 Res Dr, Saskatoon, SK S7N 3R2, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院;
关键词
molybdenum peroxide; powder diffraction; structure solution; density functional theory; MO-99;
D O I
10.1017/S0885715619000095
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The crystal structure of MoO2(O-2)(H2O)(H2O)-H-center dot has been solved using parallel tempering with the FOX software package and refined using synchrotron powder diffraction data obtained from beamline 08B1-1 at the Canadian Light Source. Rietveld refinement, performed with the software package GSAS, yielded monoclinic lattice parameters of a = 17.3355(5) angstrom, b = 3.83342(10) angstrom, c = 6.55760(18) angstrom, and beta = 91.2114(27)degrees (Z = 4, space group I2/m). The structure is composed of double zigzag molybdate chains running parallel to the b-axis. The Rietveld refined structure was compared with density functional theory (DFT) calculations performed with CRYSTAL14, and shows comparable agreement with two DFT optimized structures of similar energy, which differ by the location of the molybdate coordinated water molecule. The true structure is likely a disordered combination of the two DFT optimized structures. (C) 2019 International Centre for Diffraction Data.
引用
收藏
页码:44 / 49
页数:6
相关论文
共 50 条
  • [11] The role of the intrinsic Se and In vacancies in the interaction of O2 and H2O molecules with the InSe monolayer
    Ma, Dongwei
    Li, Tingxian
    Yuan, Di
    He, Chaozheng
    Lu, Zhiwen
    Lu, Zhansheng
    Yang, Zongxian
    Wang, Yuanxu
    APPLIED SURFACE SCIENCE, 2018, 434 : 215 - 227
  • [12] Structures of [GPGG + H - H2O]+ and [GPGG + H - H2O - NH=CH2]+ ions; evidence of rearrangement prior to dissociation
    Lau, Justin Kai-Chi
    Lai, Cheuk-Kuen
    Lam, K. H. Brian
    Chu, Ivan K.
    Martens, Jonathan
    Berden, Giel
    Oomens, Jos
    Hopkinson, Alan C.
    Siu, K. W. Michael
    INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 2019, 442 : 51 - 57
  • [13] Simulation of the adsorption behavior of CO2 / N2 / O2 and H2O molecules in lignite
    Cheng G.
    Li Y.
    Zhang M.
    Cao Y.
    Meitan Xuebao/Journal of the China Coal Society, 2021, 46 : 960 - 969
  • [14] Insights into the oxidation mechanism of millerite exposed to O2 and H2O using DFT study
    Xiong, Xiaolu
    Li, Guangshi
    Zhu, Kai
    Chen, Sha
    Li, Shenggang
    Tao, Wen
    Xu, Qian
    Cheng, Hongwei
    Zou, Xingli
    Lu, Xionggang
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2021, 1205
  • [15] Crystal structure of minocycline hydrochloride dihydrate form A, C23H28N3O7Cl (H2O)2
    Wheatley, Austin M.
    Kaduk, James A.
    Gindhart, Amy M.
    Blanton, Thomas N.
    POWDER DIFFRACTION, 2019, 34 (01) : 59 - 65
  • [16] Synthesis, structure determination from powder diffraction data and thermal behaviour of titanium(IV) oxalate [Ti2O3(H2O)2](C2O4)•H2O
    Boudaren, C
    Bataille, T
    Auffrédic, JP
    Louër, D
    SOLID STATE SCIENCES, 2003, 5 (01) : 175 - 182
  • [17] Crystal structure of terazosin hydrochloride dihydrate (Hytrin®), C19H26N5O4Cl(H2O)2
    Wheatley, Austin M.
    Kaduk, James A.
    Vickers, Martin
    Gindhart, Amy M.
    Sunzeri, Joseph G.
    Blanton, Thomas N.
    POWDER DIFFRACTION, 2018, 33 (03) : 229 - 236
  • [18] Modeling of H2O, H2O2, and H2O3 formation mechanisms on graphene oxide (GO) surfaces
    Gomez, Hector, Jr.
    Groves, Michael N.
    CARBON, 2021, 177 : 252 - 259
  • [19] Crystal structure of cephalexin monohydrate, C16H17N3O4S(H2O)
    Kaduk, James A.
    Gindhart, Amy M.
    Blanton, Thomas N.
    POWDER DIFFRACTION, 2020, 35 (04) : 293 - 300
  • [20] Preparation, Crystal Structure and Vibrational Spectra of Ca2P2O6•2H2O and [Ca(H2O)3(H2P2O6)]•0.5(C12H24O6)•H2O (Z. Anorg. Allg. Chem. 15/2017)
    Haase, Madeline
    Gjikaj, Mimoza
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 2017, 643 (15): : 952 - 952