Quantum corrections to the semiclassical Hartree-Fock theory of a harmonically trapped Bose gas

被引:0
作者
Schumayer, D. [1 ]
Cormack, S. [2 ]
van Zyl, B. P. [3 ]
Farry, J. [2 ]
Collin, A. [4 ]
Zaremba, E. [5 ]
Hutchinson, D. A. W. [2 ,6 ]
机构
[1] Meteorol Serv New Zealand Ltd, Wellington 6012, New Zealand
[2] Univ Otago, Jack Dodd Ctr Quantum Technol, Dunedin 9016, New Zealand
[3] St Francis Xavier Univ, Dept Phys, Antigonish, NS 2W5 B2G, Canada
[4] NORDITA, S-10691 Stockholm, Sweden
[5] Queens Univ, Dept Phys, Kingston, ON K7L 3N6, Canada
[6] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
基金
新加坡国家研究基金会; 加拿大自然科学与工程研究理事会;
关键词
LONG-RANGE ORDER; EINSTEIN CONDENSATION;
D O I
10.1140/epjd/e2012-30225-y
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Using the phase-space expansion of the thermodynamical distribution functions we provide a general and systematic method for including effects beyond the local-density approximation to the semiclassical Hartree-Fock theories. We illustrate the method by applying it to the case of a strictly two-dimensional, harmonically trapped Bose gas. Thereby, we address the ambiguous prediction of the Hartree-Fock approximation, namely, whether a fixed number of trapped atoms undergoes Bose-Einstein condensation or not. We also investigate the dependence of the critical temperature on the interaction strength.
引用
收藏
页数:7
相关论文
共 31 条
[1]   BOSE-EINSTEIN CONDENSATION IN LOW-DIMENSIONAL TRAPS [J].
BAGNATO, V ;
KLEPPNER, D .
PHYSICAL REVIEW A, 1991, 44 (11) :7439-7441
[2]   The effect of interactions on Bose-Einstein condensation in a quasi two-dimensional harmonic trap [J].
Bhaduri, RK ;
Reimann, SM ;
Viefers, S ;
Choudhury, AG ;
Srivastava, MK .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2000, 33 (19) :3895-3903
[3]  
Brack M., 2008, SEMICALSSICAL PHYS
[4]   Order parameter at the boundary of a trapped Bose gas [J].
Dalfovo, F ;
Pitaevskii, L ;
Stringari, S .
PHYSICAL REVIEW A, 1996, 54 (05) :4213-4217
[5]   Superfluid Bose gas in two dimensions [J].
Floerchinger, S. ;
Wetterich, C. .
PHYSICAL REVIEW A, 2009, 79 (01)
[6]   Magnetic microtraps for ultracold atoms [J].
Fortagh, Jozsef ;
Zimmermann, Claus .
REVIEWS OF MODERN PHYSICS, 2007, 79 (01) :235-289
[7]   WIGNER-KIRKWOOD EXPANSIONS [J].
FUJIWARA, Y ;
OSBORN, TA ;
WILK, SFJ .
PHYSICAL REVIEW A, 1982, 25 (01) :14-34
[8]   Many-body T-matrix of a two-dimensional Bose-Einstein condensate within the Hartree-Fock-Bogoliubov formalism [J].
Gies, C ;
Lee, MD ;
Hutchinson, DAW .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2005, 38 (11) :1797-1809
[9]  
Griffin A, 2009, BOSE-CONDENSED GASES AT FINITE TEMPERATURES, P1, DOI 10.1017/CBO9780511575150
[10]   The trapped two-dimensional Bose gas:: from Bose-Einstein condensation to Berezinskii-Kosterlitz-Thouless physics [J].
Hadzibabic, Z. ;
Krueger, P. ;
Cheneau, M. ;
Rath, S. P. ;
Dalibard, J. .
NEW JOURNAL OF PHYSICS, 2008, 10