Survival probability of an immobile target in a sea of evanescent diffusive or subdiffusive traps: A fractional equation approach

被引:33
作者
Abad, E. [1 ]
Yuste, S. B. [2 ]
Lindenberg, Katja [3 ,4 ]
机构
[1] Univ Extremadura, Ctr Univ Merida, Dept Fis Aplicada, E-06800 Merida, Spain
[2] Univ Extremadura, Dept Fis, E-06071 Badajoz, Spain
[3] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, BioCircuits Inst, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
ANOMALOUS DIFFUSION; RANDOM-WALK; TRANSPORT;
D O I
10.1103/PhysRevE.86.061120
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We calculate the survival probability of an immobile target surrounded by a sea of uncorrelated diffusive or subdiffusive evanescent traps (i.e., traps that disappear in the course of their motion). Our calculation is based on a fractional reaction-subdiffusion equation derived from a continuous time random walk model of the system. Contrary to an earlier method valid only in one dimension (d = 1), the equation is applicable in any Euclidean dimension d and elucidates the interplay between anomalous subdiffusive transport, the irreversible evanescence reaction, and the dimension in which both the traps and the target are embedded. Explicit results for the survival probability of the target are obtained for a density rho(t) of traps which decays (i) exponentially and (ii) as a power law. In the former case, the target has a finite asymptotic survival probability in all integer dimensions, whereas in the latter case there are several regimes where the values of the decay exponent for rho(t) and the anomalous diffusion exponent of the traps determine whether or not the target has a chance of eternal survival in one, two, and three dimensions. DOI: 10.1103/PhysRevE.86.061120
引用
收藏
页数:8
相关论文
共 62 条
[31]   Fractional calculus and continuous-time finance II: the waiting-time distribution [J].
Mainardi, F ;
Raberto, M ;
Gorenflo, R ;
Scalas, E .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 287 (3-4) :468-481
[32]   The CTRW in finance:: Direct and inverse problems with some generalizations and extensions [J].
Masoliver, Jaume ;
Montero, Miquel ;
Perello, Josep ;
Weiss, George H. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 379 (01) :151-167
[33]   The continuous time random walk formalism in financial markets [J].
Masoliver, Jaume ;
Montero, Miquel ;
Perello, Josep ;
Weiss, George H. .
JOURNAL OF ECONOMIC BEHAVIOR & ORGANIZATION, 2006, 61 (04) :577-598
[34]  
Mendez V, 2010, SPRINGER SER SYNERG, P1, DOI 10.1007/978-3-642-11443-4
[35]   The random walk's guide to anomalous diffusion: a fractional dynamics approach [J].
Metzler, R ;
Klafter, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01) :1-77
[36]   Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach [J].
Metzler, R ;
Barkai, E ;
Klafter, J .
PHYSICAL REVIEW LETTERS, 1999, 82 (18) :3563-3567
[37]   The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics [J].
Metzler, R ;
Klafter, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (31) :R161-R208
[38]   RANDOM WALKS ON LATTICES .2. [J].
MONTROLL, EW ;
WEISS, GH .
JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (02) :167-+
[39]   Pascal principle for diffusion-controlled trapping reactions -: art. no. 045104 [J].
Moreau, M ;
Oshanin, G ;
Bénichou, O ;
Coppey, M .
PHYSICAL REVIEW E, 2003, 67 (04) :4-451044
[40]   Trapping reactions with randomly moving traps:: Exact asymptotic results for compact exploration -: art. no. 060101 [J].
Oshanin, G ;
Bénichou, O ;
Coppey, M ;
Moreau, M .
PHYSICAL REVIEW E, 2002, 66 (06) :4-060101