Survival probability of an immobile target in a sea of evanescent diffusive or subdiffusive traps: A fractional equation approach

被引:33
作者
Abad, E. [1 ]
Yuste, S. B. [2 ]
Lindenberg, Katja [3 ,4 ]
机构
[1] Univ Extremadura, Ctr Univ Merida, Dept Fis Aplicada, E-06800 Merida, Spain
[2] Univ Extremadura, Dept Fis, E-06071 Badajoz, Spain
[3] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, BioCircuits Inst, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
ANOMALOUS DIFFUSION; RANDOM-WALK; TRANSPORT;
D O I
10.1103/PhysRevE.86.061120
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We calculate the survival probability of an immobile target surrounded by a sea of uncorrelated diffusive or subdiffusive evanescent traps (i.e., traps that disappear in the course of their motion). Our calculation is based on a fractional reaction-subdiffusion equation derived from a continuous time random walk model of the system. Contrary to an earlier method valid only in one dimension (d = 1), the equation is applicable in any Euclidean dimension d and elucidates the interplay between anomalous subdiffusive transport, the irreversible evanescence reaction, and the dimension in which both the traps and the target are embedded. Explicit results for the survival probability of the target are obtained for a density rho(t) of traps which decays (i) exponentially and (ii) as a power law. In the former case, the target has a finite asymptotic survival probability in all integer dimensions, whereas in the latter case there are several regimes where the values of the decay exponent for rho(t) and the anomalous diffusion exponent of the traps determine whether or not the target has a chance of eternal survival in one, two, and three dimensions. DOI: 10.1103/PhysRevE.86.061120
引用
收藏
页数:8
相关论文
共 62 条
[1]   Reaction-subdiffusion and reaction-superdiffusion equations for evanescent particles performing continuous-time random walks [J].
Abad, E. ;
Yuste, S. B. ;
Lindenberg, Katja .
PHYSICAL REVIEW E, 2010, 81 (03)
[2]  
Abramowitz M, 1965, Handbook of Mathematical Functions
[3]  
[Anonymous], FRACTIONAL DYNAMICS
[4]   Fractional Kramers equation [J].
Barkai, E ;
Silbey, RJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (16) :3866-3874
[5]   LUMINESCENCE QUENCHING IN MICELLAR CLUSTERS AS A RANDOM-WALK PROBLEM [J].
BARZYKIN, AV ;
TACHIYA, M .
PHYSICAL REVIEW LETTERS, 1994, 73 (25) :3479-3482
[6]   Intermittent search strategies [J].
Benichou, O. ;
Loverdo, C. ;
Moreau, M. ;
Voituriez, R. .
REVIEWS OF MODERN PHYSICS, 2011, 83 (01) :81-129
[7]   Diffusion-influenced ligand binding to buried sites in macromolecules and transmembrane channels [J].
Berezhkovskii, Alexander M. ;
Szabo, Attila ;
Zhou, Huan-Xiang .
JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (07)
[8]   Modeling non-Fickian transport in geological formations as a continuous time random walk [J].
Berkowitz, Brian ;
Cortis, Andrea ;
Dentz, Marco ;
Scher, Harvey .
REVIEWS OF GEOPHYSICS, 2006, 44 (02)
[9]   Microscopic approach to nonlinear reaction-diffusion: The case of morphogen gradient formation [J].
Boon, Jean Pierre ;
Lutsko, James F. ;
Lutsko, Christopher .
PHYSICAL REVIEW E, 2012, 85 (02)
[10]   Survival probability of a subdiffusive particle in a d-dimensional sea of mobile traps [J].
Borrego, R. ;
Abad, E. ;
Yuste, Santos B. .
PHYSICAL REVIEW E, 2009, 80 (06)