MicroRNA-22 Can Reduce Parathymosin Expression in Transdifferentiated Hepatocytes

被引:6
作者
Chen, Hung-Lin [1 ]
Huang, Jyun-Yuan [2 ]
Chen, Chun-Ming [1 ]
Chu, Tien-Hua [2 ]
Shih, Chiaho [1 ,2 ]
机构
[1] Acad Sinica, Inst Biomed Sci, Taipei, Taiwan
[2] Natl Def Med Ctr, Grad Inst Life Sci, Taipei, Taiwan
关键词
CELL-PROLIFERATION; TRANSCRIPTION FACTORS; ZN2+-BINDING PROTEIN; RAT-TISSUES; IN-VIVO; LIVER; BINDING; VIRUS; DIFFERENTIATION; RECOGNITION;
D O I
10.1371/journal.pone.0034116
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Pancreatic acinar cells AR42J-B13 can transdifferentiate into hepatocyte-like cells permissive for efficient hepatitis B virus (HBV) replication. Here, we profiled miRNAs differentially expressed in AR42J-B13 cells before and after transdifferentiation to hepatocytes, using chip-based microarray. Significant increase of miRNA expression, including miR-21, miR-22, and miR-122a, was confirmed by stem-loop real-time PCR and Northern blot analyses. In contrast, miR-93, miR-130b, and a number of other miRNAs, were significantly reduced after transdifferentiation. To investigate the potential significance of miR-22 in hepatocytes, we generated cell lines stably expressing miR-22. By 2D-DIGE, LC-MS/MS, and Western blot analyses, we identified several potential target genes of miR-22, including parathymosin. In transdifferentiated hepatocytes, miR-22 can inhibit both mRNA and protein expression of parathymosin, probably through a direct and an indirect mechanism. We tested two computer predicted miR-22 target sites at the 3' UTR of parathymosin, by the 3' UTR reporter gene assay. Treatment with anti-miR-22 resulted in significant elevation of the reporter activity. In addition, we observed an in vivo inverse correlation between miR-22 and parathymosin mRNA in their tissue distribution in a rat model. The phenomenon that miR-22 can reduce parathymosin protein was also observed in human hepatoma cell lines Huh7 and HepG2. So far, we detected no major effect on several transdifferentiation markers when AR42J-B13 cells were transfected with miR-22, or anti-miR-22, or a parathymosin expression vector, with or without dexamethasone treatment. Therefore, miR-22 appears to be neither necessary nor sufficient for transdifferentiation. We discussed the possibility that altered expression of some other microRNAs could induce cell cycle arrest leading to transdifferentiation.
引用
收藏
页数:16
相关论文
共 42 条
[1]   CONTROLLED SYNTHESIS OF HBSAG IN A DIFFERENTIATED HUMAN-LIVER CARCINOMA-DERIVED CELL-LINE [J].
ADEN, DP ;
FOGEL, A ;
PLOTKIN, S ;
DAMJANOV, I ;
KNOWLES, BB .
NATURE, 1979, 282 (5739) :615-616
[2]   Genomic profiling of MicroRNA and messenger RNA reveals deregulated MicroRNA expression in prostate cancer [J].
Ambs, Stefan ;
Prueitt, Robyn L. ;
Yi, Ming ;
Hudson, Robert S. ;
Howe, Tiffany M. ;
Petrocca, Fabio ;
Wallace, Tiffany A. ;
Liu, Chang-Gong ;
Volinia, Stefano ;
Calin, George A. ;
Yfantis, Harris G. ;
Stephens, Robert M. ;
Croce, Carlo M. .
CANCER RESEARCH, 2008, 68 (15) :6162-6170
[3]   miR-22 Forms a Regulatory Loop in PTEN/AKT Pathway and Modulates Signaling Kinetics [J].
Bar, Nadav ;
Dikstein, Rivka .
PLOS ONE, 2010, 5 (05)
[4]   MicroRNAs: Target Recognition and Regulatory Functions [J].
Bartel, David P. .
CELL, 2009, 136 (02) :215-233
[5]   MRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes [J].
Behm-Ansmant, Isabelle ;
Rehwinkel, Jan ;
Doerks, Tobias ;
Stark, Alexander ;
Bork, Peer ;
Izaurralde, Elisa .
GENES & DEVELOPMENT, 2006, 20 (14) :1885-1898
[6]  
BRAND IA, 1991, EUR J CELL BIOL, V54, P157
[7]   microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7 [J].
Chen, Jian-Fu ;
Tao, Yazhong ;
Li, Juan ;
Deng, Zhongliang ;
Yan, Zhen ;
Xiao, Xiao ;
Wang, Da-Zhi .
JOURNAL OF CELL BIOLOGY, 2010, 190 (05) :867-879
[8]   miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting [J].
Esau, C ;
Davis, S ;
Murray, SF ;
Yu, XX ;
Pandey, SK ;
Pear, M ;
Watts, L ;
Booten, SL ;
Graham, M ;
McKay, R ;
Subramaniam, A ;
Propp, S ;
Lollo, BA ;
Freier, S ;
Bennett, CF ;
Bhanot, S ;
Monia, BP .
CELL METABOLISM, 2006, 3 (02) :87-98
[9]   miR-122, a paradigm for the role of microRNAs in the liver [J].
Girard, Muriel ;
Jacquemin, Emmanuel ;
Munnich, Arnold ;
Lyonnet, Stanislas ;
Henrion-Caude, Alexandra .
JOURNAL OF HEPATOLOGY, 2008, 48 (04) :648-656
[10]   miRBase: tools for microRNA genomics [J].
Griffiths-Jones, Sam ;
Saini, Harpreet Kaur ;
van Dongen, Stijn ;
Enright, Anton J. .
NUCLEIC ACIDS RESEARCH, 2008, 36 :D154-D158