Experimental study on thermal runaway and its propagation in the large format lithium ion battery module with two electrical connection modes

被引:122
作者
Huang, Zonghou [1 ]
Zhao, Chunpeng [1 ]
Li, Huang [1 ]
Peng, Wen [2 ]
Zhang, Zheng [2 ]
Wang, Qingsong [1 ]
机构
[1] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Peoples R China
[2] Guoxuan High Tech Co Ltd, Hefei 230012, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium ion battery safety; Thermal runaway propagation; Parallel; Series; State of charge; FAILURE-MECHANISM; STABILITY; BEHAVIOR; CATHODE; ELECTROLYTE; OVERCHARGE; ABUSE; CELLS; FIRE;
D O I
10.1016/j.energy.2020.117906
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper experimentally investigated the thermal runaway (TR) characteristics of lithium ion batteries (LIBs) with different state of charges (SOC) and its propagation in the large format module with different electrical connection. Some critical parameters of LIBs with different SOCs such as temperature, voltage, mass loss, heat release rate, released gas during TR were analyzed. The results indicated that the TR severity of LIB with 100% is much higher than that of LIB with 50% SOC. The generations of combustible and toxic gases for LIB with 100% SOC are much higher than those of 50% SOC. Based on the experiment results, the modules consisting of four LIBs with 100%SOC were built to investigate the effect of electrical connection on TR propagation characteristics. It was found TR propagates faster in parallel module than in series and unconnected modules, and TR spreads faster in series modules than in unconnected module. Moreover, the average maximum temperature of the module in parallel is about 30 degrees C higher than that of module in series. A significant time delay of TR propagation time between the last two LIBs in parallel module was observed. Finally, the heat transfer between LIBs was calculated. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:16
相关论文
共 40 条
[1]  
[Anonymous], FIRE TECHNOLOGY
[2]   Structural Changes and Thermal Stability of Charged LiNixMnyCozO2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy [J].
Bak, Seong-Min ;
Hu, Enyuan ;
Zhou, Yongning ;
Yu, Xiqian ;
Senanayake, Sanjaya D. ;
Cho, Sung-Jin ;
Kim, Kwang-Bum ;
Chung, Kyung Yoon ;
Yang, Xiao-Qing ;
Nam, Kyung-Wan .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (24) :22594-22601
[3]   Modeling of Thermal Runaway Propagation in a Pouch Cell Stack [J].
Bilyaz, Serhat ;
Marr, Kevin C. ;
Ezekoye, Ofodike A. .
FIRE TECHNOLOGY, 2020, 56 (06) :2441-2466
[4]   Pursuing safer batteries: Thermal abuse of LiFePO4 cells [J].
Bugryniec, Peter J. ;
Davidson, Jonathan N. ;
Cumming, Denis J. ;
Brown, Solomon F. .
JOURNAL OF POWER SOURCES, 2019, 414 :557-568
[5]   Multi-scale study of thermal stability of lithiated graphite [J].
Chen, Zonghai ;
Qin, Yan ;
Ren, Yang ;
Lu, Wenquan ;
Orendorff, Christopher ;
Roth, E. Peter ;
Amine, Khalil .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (10) :4023-4030
[6]   Thermal stability of charged LiNi0.5Co0.2Mn0.3O2 cathode for Li-ion batteries investigated by synchrotron based in situ X-ray diffraction [J].
Cho, Yong-Hun ;
Jang, Donghyuk ;
Yoon, Jeongbae ;
Kim, Hyunchul ;
Ahn, Tae Kyu ;
Nam, Kyung-Wan ;
Sung, Yung-Eun ;
Kim, Woo-Seong ;
Lee, Yun-Sung ;
Yang, Xiao-Qing ;
Yoon, Won-Sub .
JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 562 :219-223
[7]   Positive-Temperature-Coefficient Graphite Anode as a Thermal Runaway Firewall to Improve the Safety of LiCoO2/Graphite Batteries under Abusive Conditions [J].
Deng, Yaoming ;
Wang, Zheng ;
Ma, Zhen ;
Nan, Junmin .
ENERGY TECHNOLOGY, 2020, 8 (03)
[8]   Fire behavior of carbonates-based electrolytes used in Li-ion rechargeable batteries with a focus on the role of the LiPF6 and LiFSI salts [J].
Eshetu, Gebrekidan Gebresilassie ;
Bertrand, Jean-Pierre ;
Lecocq, Amandine ;
Grugeon, Sylvie ;
Laruelle, Stephane ;
Armand, Michel ;
Marlair, Guy .
JOURNAL OF POWER SOURCES, 2014, 269 :804-811
[9]   Thermal runaway propagation model for designing a safer battery pack with 25 Ah LiNixCoyMnzO2 large format lithium ion battery [J].
Feng, Xuning ;
He, Xiangming ;
Ouyang, Minggao ;
Lu, Languang ;
Wu, Peng ;
Kulp, Christian ;
Prasser, Stefan .
APPLIED ENERGY, 2015, 154 :74-91
[10]   Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module [J].
Feng, Xuning ;
Sun, Jing ;
Ouyang, Minggao ;
Wang, Fang ;
He, Xiangming ;
Lu, Languang ;
Peng, Huei .
JOURNAL OF POWER SOURCES, 2015, 275 :261-273