First passage percolation on the exponential of two-dimensional branching random walk

被引:5
|
作者
Ding, Jian [1 ]
Goswami, Subhajit [2 ]
机构
[1] Univ Penn, Philadelphia, PA 19104 USA
[2] Inst Hautes Etud Sci, Paris, France
关键词
first passage percolation (FPP); branching random walk (BRW); Gaussian free field (GFF); Liouville quantum gravity (LQG);
D O I
10.1214/17-ECP102
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the branching random walk {R-z(N) : z is an element of V-N} with Gaussian increments indexed over a two-dimensional box V-N of side length N, and we study the first passage percolation where each vertex is assigned weight e(z)(gamma R)(N) for gamma > 0. We show that for gamma > 0 sufficiently small but fixed, the expected FPP distance between the left and right boundaries is at most O (N1-gamma 2/10).
引用
收藏
页数:14
相关论文
共 50 条
  • [1] CATALYTIC BRANCHING RANDOM WALK ON A TWO-DIMENSIONAL LATTICE
    Bulinskaya, E. Vl
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2011, 55 (01) : 120 - U248
  • [2] Geodesics in two-dimensional first-passage percolation
    Licea, C
    Newman, CM
    ANNALS OF PROBABILITY, 1996, 24 (01): : 399 - 410
  • [3] On the speed of convergence for two-dimensional first passage Ising percolation
    Higuchi, Y
    Zhang, Y
    ANNALS OF PROBABILITY, 2000, 28 (01): : 353 - 378
  • [4] Fluctuations of transverse increments in two-dimensional first passage percolation
    Gangopadhyay, Ujan
    ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [5] Two-dimensional limit theorem for a critical catalytic branching random walk
    Topchii, V
    Vatutin, V
    MATHEMATICS AND COMPUTER SCIENCE III: ALGORITHMS, TREES, COMBINATORICS AND PROBABILITIES, 2004, : 387 - 395
  • [6] First Passage Percolation, Local Uniqueness for Interlacements and Capacity of Random Walk
    Prevost, Alexis
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2025, 406 (02)
  • [7] Busemann Functions and Infinite Geodesics in Two-Dimensional First-Passage Percolation
    Damron, Michael
    Hanson, Jack
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 325 (03) : 917 - 963
  • [8] Busemann Functions and Infinite Geodesics in Two-Dimensional First-Passage Percolation
    Michael Damron
    Jack Hanson
    Communications in Mathematical Physics, 2014, 325 : 917 - 963
  • [9] Two-dimensional Quantum Random Walk
    Baryshnikov, Yuliy
    Brady, Wil
    Bressler, Andrew
    Pemantle, Robin
    JOURNAL OF STATISTICAL PHYSICS, 2011, 142 (01) : 78 - 107
  • [10] Two-dimensional Quantum Random Walk
    Yuliy Baryshnikov
    Wil Brady
    Andrew Bressler
    Robin Pemantle
    Journal of Statistical Physics, 2011, 142 : 78 - 107