High pressure infiltration sintering behavior of WC-Co alloys

被引:9
作者
Fan, Xiaoqin [1 ,2 ]
He, Duanwei [1 ,2 ]
Wang, Pei [1 ,2 ]
Li, Dong [2 ]
Liu, Yinjuan [1 ,2 ]
Ma, Dejiang [1 ,2 ]
Du, Yanchun [1 ,2 ]
Gao, Shangpan [1 ,2 ]
Kou, Zili [1 ,2 ]
机构
[1] Sichuan Univ, Inst Atom & Mol Phys, Chengdu 610065, Peoples R China
[2] Sichuan Univ, Key Lab High Energy Dens Phys & Technol, Minist Educ, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
WC; melt cobalt; high pressure infiltration sintering; uniform distribution; TUNGSTEN CARBIDE; MECHANICAL-PROPERTIES; HARDMETALS; MICROSTRUCTURE; COMPOSITES; TOUGHNESS;
D O I
10.1080/08957959.2016.1221950
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, two average tungsten carbide particle sizes of 2, 0.5m are placed respectively, in contact with a WC-16Co substrate, pressed at the pressure of 4.5-5.5GPa, and heated to temperatures ranging from 1350 degrees C to 1500 degrees C in a large-volume cubic press. During the process Co was forced out of the WC-16Co substrate into the compressed powder. The resulting infiltrated samples were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM), Vickers hardness and cutting performance tests. The results of XRD confirmed that the sintered bulks have WC and Co phases. The scanning electron microscopy (SEM) analysis reveals that the WC grains in well-sintered alloys are round in shape and cobalt with lower content is uniformly dispersed in the WC grain boundaries. The sintered sub-micron WC-Co alloy with a cobalt content of 3.8wt% exhibits a prominent combination of high hardness value of 23.1GPa and a large fracture toughness value of 8.6MPam(1/2). The high-speed cutting tests indicating its cutting performance is significantly superior to the commercial YG6X (WC-6wt%Co with WC grain size of 0.5m).
引用
收藏
页码:585 / 594
页数:10
相关论文
共 21 条
  • [1] Densification and alloying of microwave sintering WC-8 wt.%Co composites
    Bao, Rui
    Yi, Jianhong
    [J]. INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2014, 43 : 269 - 275
  • [2] Microstructures of binderless tungsten carbides sintered by spark plasma sintering process
    Cha, SI
    Hong, SH
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2003, 356 (1-2): : 381 - 389
  • [3] Chen Xin, 1998, POWDER METALLURGY IN, V8, P30
  • [4] Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide - A review
    Fang, Z. Zak
    Wang, Xu
    Ryu, Taegong
    Hwang, Kyu Sup
    Sohn, H. Y.
    [J]. INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2009, 27 (02) : 288 - 299
  • [5] On the thermal characterization of a HPHT sintered WC-15% wt Co hardmetal alloy
    Faria, RT
    Rodrigues, MF
    Esquef, ID
    Vargas, H
    Filgueira, M
    [J]. INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2005, 23 (02) : 115 - 118
  • [6] Cemented carbide phase diagrams: A review
    Fernandes, C. M.
    Senos, A. M. R.
    [J]. INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2011, 29 (04) : 405 - 418
  • [7] High pressure synthesis of cubic boron nitride from Si-hBN system
    He, DW
    Akaishi, M
    Tanaka, T
    [J]. DIAMOND AND RELATED MATERIALS, 2001, 10 (08) : 1465 - 1469
  • [8] Synthesis of WC and dense WC-5 vol.% Co hard materials by high-frequency induction heated combustion
    Kim, HC
    Oh, DY
    Guojian, J
    Shon, IJ
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 368 (1-2): : 10 - 17
  • [9] Effects of AGG on fracture toughness of tungsten carbide
    Li, Tao
    Li, Qingfa
    Fuh, J. Y. H.
    Yu, Poh Ching
    Lu, L.
    Wu, C. C.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2007, 445 : 587 - 592
  • [10] Effects of lower cobalt binder concentrations in sintering of tungsten carbide
    Li, Tao
    Li, Qingfa
    Fuh, J. Y. H.
    Yu, Poll Ching
    Wu, C. C.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2006, 430 (1-2): : 113 - 119