Pairwise Generalization Network for Cross-Domain Image Recognition

被引:4
作者
Liu, Y. B. [1 ,2 ]
Han, T. T. [1 ,2 ]
Gao, Z. [1 ,2 ,3 ]
机构
[1] Tianjin Univ Technol, Minist Educ, Tianjin Key Lab Intelligence Comp & Novel Softwar, Tianjin 300384, Peoples R China
[2] Tianjin Univ Technol, Minist Educ, Key Lab Comp Vis & Syst, Tianjin 300384, Peoples R China
[3] Qilu Univ Technol, Shandong Acad Sci, Shandong Artifical Intelligence Inst, Shandong Comp Sci Ctr,Natl Supercomp Ctr Jinan, Jinan 250014, Peoples R China
基金
中国国家自然科学基金;
关键词
Cross-domain; Image recognition; Pairwise;
D O I
10.1007/s11063-019-10041-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, convolutional neural networks have received increasing attention from the computer vision and machine learning communities. Due to the differences in the distribution, tone and brightness of the training domain and test domain, researchers begin to focus on cross-domain image recognition. In this paper, we propose a Pairwise Generalization Network (PGN) for addressing the problem of cross-domain image recognition where Instance Normalization and Batch Normalization are added to enhance their abilities in the original domain and to expand to the new domain. Meanwhile, the Siamese architecture is utilized in the PGN to learn an embedding subspace that is discriminative, and map positive sample pairs aligned and negative sample pairs separated, which can work well even with only few labeled target data samples. We also add residual architecture and MMD loss for the PGN model to further improve its performance. Extensive experiments on two different public benchmarks show that our PGN solution significantly outperforms the state-of-the-art methods.
引用
收藏
页码:1023 / 1041
页数:19
相关论文
共 50 条
  • [21] Cross-domain structure learning for visual data recognition
    Lu, Yuwu
    Luo, Xingping
    Wen, Jiajun
    Lai, Zhihui
    Li, Xuelong
    PATTERN RECOGNITION, 2022, 134
  • [22] Cross-Domain Distribution Calibration of Hyperspectral Image Classification
    Ding, Junyuan
    Wei, Wei
    Zhang, Lei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [23] CROSS-DOMAIN HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON TRANSFORMER
    Ling, Jiawei
    Ye, Minchao
    Qian, Yuntao
    Qian, Qipeng
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7629 - 7632
  • [24] Discriminative Style Learning for Cross-Domain Image Captioning
    Yuan, Jin
    Zhu, Shuai
    Huang, Shuyin
    Zhang, Hanwang
    Xiao, Yaoqiang
    Li, Zhiyong
    Wang, Meng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 1723 - 1736
  • [25] Topological Information Aggregation Network for Few-Shot Cross-Domain Hyperspectral Image Classification
    Shi, Kai
    Wang, Wenzhen
    Liu, Qichao
    Xiao, Liang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [26] Cross-Domain Palmprint Recognition via Regularized Adversarial Domain Adaptive Hashing
    Du, Xuefeng
    Zhong, Dexing
    Shao, Huikai
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (06) : 2372 - 2385
  • [27] STR Transformer: A Cross-domain Transformer for Scene Text Recognition
    Wu, Xing
    Tang, Bin
    Zhao, Ming
    Wang, Jianjia
    Guo, Yike
    APPLIED INTELLIGENCE, 2023, 53 (03) : 3444 - 3458
  • [28] Dual Contrastive Learning for Cross-Domain Named Entity Recognition
    Xu, Jingyun
    Yu, Junnan
    Cai, Yi
    Chua, Tat-Seng
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (06)
  • [29] CROSS-DOMAIN PALMPRINT RECOGNITION BASED ON TRANSFER CONVOLUTIONAL AUTOENCODER
    Shao, Huikai
    Zhong, Dexing
    Du, Xuefeng
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 1153 - 1157
  • [30] Cross-Domain Sample Relationship Learning for Facial Expression Recognition
    Chen, Dongliang
    Wen, Guihua
    Wen, Pengcheng
    Yang, Pei
    Chen, Rui
    Li, Cheng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 3788 - 3798