Genetically Induced In Situ-Poling for Piezo-Active Biohybrid Nanowires

被引:18
作者
Kilper, Stefan [1 ]
Jahnke, Timotheus [1 ]
Aulich, Marc [1 ]
Burghard, Zaklina [1 ]
Rothenstein, Dirk [1 ]
Bill, Joachim [1 ]
机构
[1] Univ Stuttgart, Inst Mat Sci IMW, Heisenbergstr 3, D-70569 Stuttgart, Germany
关键词
biohybrid materials; genetic engineering; in situ poling; M13; phage; piezoelectricity; ZNO; NANOPARTICLES; M13; BACTERIOPHAGES; POLARIZATION; DESIGN; FIELD;
D O I
10.1002/adma.201805597
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Polycrystalline piezo-active materials only exhibit a high macroscopic piezoresponse if they consist of particles with oriented crystal directions and aligned intrinsic dipole moments. For ferroelectric materials, the postsynthesis alignment of the dipoles is generally achieved by electric poling procedures. However, there are numerous technically interesting non-ferroelectric piezo-active materials like zinc oxide (ZnO). These materials demand the alignment of their intrinsic dipoles during the fabrication process. Therefore, in situ-poling techniques have to be developed. This study utilizes genetically modified M13 phage templates for the generation of force fields, which directly control the ZnO dipole poling. By genetic modification of M13 phage template, the piezoelectric response of the ZnO/M13 phage hybrid nanowire is doubled compared to the hybrid nanowire based on unmodified M13 wild type (wt) phage templates. Thus, the formation of piezo-active domains consisting of oriented ZnO nanocrystals is directly induced by the genetic modification. By the combination of the fiber-like structure of individual M13 phages with the bioenhanced electromechanical properties of ZnO, hybrid nanowires with a length of approximate to 1.1 mu m and a thickness of approximate to 63.5 nm are fabricated with a high piezoelectric coefficient of up to d(33) = 7.8 pm V-1 for genetically modified M13 phage templates.
引用
收藏
页数:7
相关论文
共 46 条
[1]   M13 Bacteriophage as a Biological Scaffold for Magnetically-Recoverable Metal Nanowire Catalysts: Combining Specific and Nonspecific Interactions To Design Multifunctional Nanocomposites [J].
Avery, Kendra N. ;
Schaak, Janell E. ;
Schaak, Raymond E. .
CHEMISTRY OF MATERIALS, 2009, 21 (11) :2176-2178
[2]   Selection and analysis of solid-binding peptides [J].
Baneyx, Francois ;
Schwartz, Daniel T. .
CURRENT OPINION IN BIOTECHNOLOGY, 2007, 18 (04) :312-317
[3]   Local piezoelectric properties of ZnO thin films prepared by RF-plasma-assisted pulsed-laser deposition method [J].
Bdikin, I. K. ;
Gracio, J. ;
Ayouchi, R. ;
Schwarz, R. ;
Kholkin, A. L. .
NANOTECHNOLOGY, 2010, 21 (23)
[4]   Generation of Multishell Magnetic Hybrid Nanoparticles by Encapsulation of Genetically Engineered and Fluorescent Bacterial Magnetosomes with ZnO and SiO2 [J].
Borg, Sarah ;
Rothenstein, Dirk ;
Bill, Joachim ;
Schueler, Dirk .
SMALL, 2015, 11 (33) :4209-4217
[5]   Piezoelectric and ferroelectric materials and structures for energy harvesting applications [J].
Bowen, C. R. ;
Kim, H. A. ;
Weaver, P. M. ;
Dunn, S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (01) :25-44
[6]   Toughening through Nature-Adapted Nanoscale Design [J].
Burghard, Zaklina ;
Zini, Lorenzo ;
Srot, Vesna ;
Bellina, Paul ;
van Aken, Peter A. ;
Bill, Joachim .
NANO LETTERS, 2009, 9 (12) :4103-4108
[7]   Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles [J].
Cho, KS ;
Talapin, DV ;
Gaschler, W ;
Murray, CB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (19) :7140-7147
[8]   Biotemplated Synthesis of PZT Nanowires [J].
Cung, Kellye ;
Han, Booyeon J. ;
Nguyen, Thanh D. ;
Mao, Sheng ;
Yeh, Yao-Wen ;
Xu, Shiyou ;
Naik, Rajesh R. ;
Poirier, Gerald ;
Yao, Nan ;
Purohit, Prashant K. ;
McAlpine, Michael C. .
NANO LETTERS, 2013, 13 (12) :6197-6202
[9]   AB-INITIO STUDY OF PIEZOELECTRICITY AND SPONTANEOUS POLARIZATION IN ZNO [J].
DALCORSO, A ;
POSTERNAK, M ;
RESTA, R ;
BALDERESCHI, A .
PHYSICAL REVIEW B, 1994, 50 (15) :10715-10721
[10]  
Francesca L. B., 2016, NANOTECHNOLOGY, V27