Significant improvement of oxidase activity through the genetic incorporation of a redox-active unnatural amino acid

被引:55
作者
Yu, Yang [3 ,4 ]
Zhou, Qing [2 ]
Wang, Li [1 ,2 ]
Liu, Xiaohong [2 ]
Zhang, Wei [2 ]
Hu, Meirong [2 ]
Dong, Jianshu [2 ]
Li, Jiasong [1 ,2 ]
Lv, Xiaoxuan [2 ]
Ouyang, Hanlin [3 ,4 ]
Li, Han [2 ]
Gao, Feng [2 ]
Gong, Weimin [2 ]
Lu, Yi [3 ,4 ]
Wang, Jiangyun [2 ]
机构
[1] Univ Sci & Technol China, Sch Life Sci, Hefei 230026, Anhui, Peoples R China
[2] Chinese Acad Sci, Inst Biophys, Lab RNA Biol, Beijing 100101, Peoples R China
[3] Univ Illinois, Ctr Biophys & Computat Biol, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
CYTOCHROME-C-OXIDASE; CROSS-LINK; COMPUTATIONAL DESIGN; GALACTOSE-OXIDASE; DE-NOVO; TYROSINE; O-2; MODEL; MYOGLOBIN; RADICALS;
D O I
10.1039/c5sc01126d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
While nature employs various covalent and non-covalent strategies to modulate tyrosine (Y) redox potential and pK(a) in order to optimize enzyme activities, such approaches have not been systematically applied for the design of functional metalloproteins. Through the genetic incorporation of 3-methoxytyrosine (OMeY) into myoglobin, we replicated important features of cytochrome c oxidase (CcO) in this small soluble protein, which exhibits selective O-2 reduction activity while generating a small amount of reactive oxygen species (ROS). These results demonstrate that the electron donating ability of a tyrosine residue in the active site is important for CcO function. Moreover, we elucidated the structural basis for the genetic incorporation of OMeY into proteins by solving the X-ray structure of OMeY specific aminoacyl-tRNA synthetase complexed with OMeY.
引用
收藏
页码:3881 / 3885
页数:5
相关论文
共 37 条
  • [1] Site-specific incorporation of a redox-active amino acid into proteins
    Alfonta, L
    Zhang, ZW
    Uryu, S
    Loo, JA
    Schultz, PG
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (48) : 14662 - 14663
  • [2] Olefin Cyclopropanation via Carbene Transfer Catalyzed by Engineered Cytochrome P450 Enzymes
    Coelho, Pedro S.
    Brustad, Eric M.
    Kannan, Arvind
    Arnold, Frances H.
    [J]. SCIENCE, 2013, 339 (6117) : 307 - 310
  • [3] Class I Ribonucleotide Reductases: Metallocofactor Assembly and Repair In Vitro and In Vivo
    Cotruvo, Joseph A., Jr.
    Stubbe, JoAnne
    [J]. ANNUAL REVIEW OF BIOCHEMISTRY, VOL 80, 2011, 80 : 733 - 767
  • [4] Macromolecular modeling with Rosetta
    Das, Rhiju
    Baker, David
    [J]. ANNUAL REVIEW OF BIOCHEMISTRY, 2008, 77 : 363 - 382
  • [5] De novo design and structural characterization of proteins and metalloproteins
    DeGrado, WF
    Summa, CM
    Pavone, V
    Nastri, F
    Lombardi, A
    [J]. ANNUAL REVIEW OF BIOCHEMISTRY, 1999, 68 : 779 - 819
  • [6] Diner BA, 2005, ADV PHOTO RESPIRAT, V22, P207
  • [7] Free radical mechanisms in enzymology
    Frey, Perry A.
    Hegeman, Adrian D.
    Reed, George H.
    [J]. CHEMICAL REVIEWS, 2006, 106 (08) : 3302 - 3316
  • [8] Computational Design of Virus-Like Protein Assemblies on Carbon Nanotube Surfaces
    Grigoryan, Gevorg
    Kim, Yong Ho
    Acharya, Rudresh
    Axelrod, Kevin
    Jain, Rishabh M.
    Willis, Lauren
    Drndic, Marija
    Kikkawa, James M.
    DeGrado, William F.
    [J]. SCIENCE, 2011, 332 (6033) : 1071 - 1076
  • [9] Metalloprotein design using genetic code expansion
    Hu, Cheng
    Chan, Sunney I.
    Sawyer, Elizabeth B.
    Yu, Yang
    Wang, Jiangyun
    [J]. CHEMICAL SOCIETY REVIEWS, 2014, 43 (18) : 6498 - 6510
  • [10] Biotinylated Rh(III) Complexes in Engineered Streptavidin for Accelerated Asymmetric C-H Activation
    Hyster, Todd K.
    Knoerr, Livia
    Ward, Thomas R.
    Rovis, Tomislav
    [J]. SCIENCE, 2012, 338 (6106) : 500 - 503