共 50 条
Lipid Coated Microbubbles and Low Intensity Pulsed Ultrasound Enhance Chondrogenesis of Human Mesenchymal Stem Cells in 3D Printed Scaffolds
被引:42
|作者:
Aliabouzar, Mitra
[1
]
Zhang, Lijie Grace
[1
,2
,3
]
Sarkar, Kausik
[1
]
机构:
[1] George Washington Univ, Dept Mech & Aerosp Engn, Washington, DC 20052 USA
[2] George Washington Univ, Dept Biomed Engn, Washington, DC 20052 USA
[3] George Washington Univ, Dept Med, Washington, DC 20052 USA
来源:
SCIENTIFIC REPORTS
|
2016年
/
6卷
基金:
美国国家科学基金会;
关键词:
HUMAN ARTICULAR CHONDROCYTES;
GENE-EXPRESSION;
CONTRAST AGENTS;
DIFFERENTIATION;
CARTILAGE;
SONOPORATION;
STIMULATION;
MATRIX;
GROWTH;
TRANSFECTION;
D O I:
10.1038/srep37728
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Lipid-coated microbubbles are used to enhance ultrasound imaging and drug delivery. Here we apply these microbubbles along with low intensity pulsed ultrasound (LIPUS) for the first time to enhance proliferation and chondrogenic differentiation of human mesenchymal stem cells (hMSCs) in a 3D printed poly-(ethylene glycol)-diacrylate (PEG-DA) hydrogel scaffold. The hMSC proliferation increased up to 40% after 5 days of culture in the presence of 0.5% (v/v) microbubbles and LIPUS in contrast to 18% with LIPUS alone. We systematically varied the acoustic excitation parameters-excitation intensity, frequency and duty cycle-to find 30 mW/cm(2), 1.5 MHz and 20% duty cycle to be optimal for hMSC proliferation. A 3-week chondrogenic differentiation results demonstrated that combining LIPUS with microbubbles enhanced glycosaminoglycan (GAG) production by 17% (5% with LIPUS alone), and type II collagen production by 78% (44% by LIPUS alone). Therefore, integrating LIPUS and microbubbles appears to be a promising strategy for enhanced hMSC growth and chondrogenic differentiation, which are critical components for cartilage regeneration. The results offer possibilities of novel applications of microbubbles, already clinically approved for contrast enhanced ultrasound imaging, in tissue engineering.
引用
收藏
页数:11
相关论文