Zeros of Green functions in topological insulators

被引:5
|
作者
Misawa, Takahiro [1 ,2 ,3 ]
Yamaji, Youhei [4 ,5 ]
机构
[1] Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
[2] Waseda Univ, Res Inst Sci & Engn, 3-4-1 Okubo,Shinjuku, Tokyo 1698555, Japan
[3] Univ Tokyo, Inst Solid State Phys, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778581, Japan
[4] Natl Inst Mat Sci, Ctr Green Res Energy & Environm Mat, Tsukuba, Ibaraki 3050044, Japan
[5] Univ Tokyo, Dept Appl Phys, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1138656, Japan
来源
PHYSICAL REVIEW RESEARCH | 2022年 / 4卷 / 02期
基金
中国国家自然科学基金;
关键词
CATALOG;
D O I
10.1103/PhysRevResearch.4.023177
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This study demonstrates that the zeros of the diagonal components of Green functions are key quantities that can detect noninteracting topological insulators. We show that zeros of the Green functions traverse the band gap in the topological phases. The traverses induce the crosses of zeros, and the zeros' surface in the band gap, analogous to the Fermi surface of metals. By calculating the zeros of the microscopic models, we show the traverses of the zeros universally appear in all six classes of conventional noninteracting topological insulators. By utilizing the eigenvector-eigenvalue identity, which is a recently rediscovered relation in linear algebra, we prove that the traverses of the zeros in the bulk Green functions are guaranteed by the band inversions, which occur in the topological phases. The relevance of the zeros to detecting the exotic topological insulators such as the higher-order topological insulators is also discussed. For the Hamiltonians with the nearest-neighbor hoppings, we also show that the gapless edge state guarantees the zeros' surfaces in the band gap. The analysis demonstrates that the zeros can be used to detect a wide range of topological insulators and thus useful for searching new topological materials.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Magnetic topological insulators
    Tokura, Yoshinori
    Yasuda, Kenji
    Tsukazaki, Atsushi
    NATURE REVIEWS PHYSICS, 2019, 1 (02) : 126 - 143
  • [42] An introduction to topological insulators
    Fruchart, Michel
    Carpentier, David
    COMPTES RENDUS PHYSIQUE, 2013, 14 (9-10) : 779 - 815
  • [43] Floquet topological insulators
    Cayssol, Jerome
    Dora, Balazs
    Simon, Ferenc
    Moessner, Roderich
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2013, 7 (1-2): : 101 - 108
  • [44] Topological Insulators in α-Graphyne
    Wang Guo-Xiang
    Hou Jing-Min
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2013, 59 (04) : 489 - 493
  • [45] Progress in topological insulators
    Morpurgo, Alberto
    Trauzettel, Bjoern
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2012, 27 (12)
  • [46] Photonic Topological Insulators
    Segev, Mordechai
    Plotnik, Yonatan
    Rechtsman, Mikael C.
    Lumer, Yaakov
    Bandres, Miguel A.
    Zeuner, Julia M.
    Szameit, Alexander
    2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [47] Statistical topological insulators
    Fulga, I. C.
    van Heck, B.
    Edge, J. M.
    Akhmerov, A. R.
    PHYSICAL REVIEW B, 2014, 89 (15):
  • [48] Exceptional topological insulators
    Denner, M. Michael
    Skurativska, Anastasiia
    Schindler, Frank
    Fischer, Mark H.
    Thomale, Ronny
    Bzdusek, Tomas
    Neupert, Titus
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [49] Colloidal topological insulators
    Johannes Loehr
    Daniel de las Heras
    Adam Jarosz
    Maciej Urbaniak
    Feliks Stobiecki
    Andreea Tomita
    Rico Huhnstock
    Iris Koch
    Arno Ehresmann
    Dennis Holzinger
    Thomas M. Fischer
    Communications Physics, 1
  • [50] Plasmonics in Topological Insulators
    Lai, Yi-Ping
    Lin, I-Tan
    Wu, Kuang-Hsiung
    Liu, Jia-Ming
    NANOMATERIALS AND NANOTECHNOLOGY, 2014, 4