Bayesian Networks for Clinical Decision Support in Lung Cancer Care

被引:103
作者
Sesen, M. Berkan [1 ]
Nicholson, Ann E. [2 ]
Banares-Alcantara, Rene [1 ]
Kadir, Timor [3 ]
Brady, Michael [4 ]
机构
[1] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
[2] Monash Univ, Fac Informat Technol, Clayton, Vic, Australia
[3] Mirada Med, Oxford, England
[4] Univ Oxford, Dept Oncol, Oxford, England
基金
英国工程与自然科学研究理事会;
关键词
INFLUENCE DIAGRAMS; EXPERT-SYSTEMS; BREAST-CANCER; MISSING DATA; FOLLOW-UP; SURVIVAL; PREDICTION; MANAGEMENT; DIAGNOSIS; MODEL;
D O I
10.1371/journal.pone.0082349
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Survival prediction and treatment selection in lung cancer care are characterised by high levels of uncertainty. Bayesian Networks (BNs), which naturally reason with uncertain domain knowledge, can be applied to aid lung cancer experts by providing personalised survival estimates and treatment selection recommendations. Based on the English Lung Cancer Database (LUCADA), we evaluate the feasibility of BNs for these two tasks, while comparing the performances of various causal discovery approaches to uncover the most feasible network structure from expert knowledge and data. We show first that the BN structure elicited from clinicians achieves a disappointing area under the ROC curve of 0.75 (+/- 0.03), whereas a structure learned by the CAMML hybrid causal discovery algorithm, which adheres with the temporal restrictions, achieves 0.81 (+/- 0.03). Second, our causal intervention results reveal that BN treatment recommendations, based on prescribing the treatment plan that maximises survival, can only predict the recorded treatment plan 29% of the time. However, this percentage rises to 76% when partial matches are included.
引用
收藏
页数:13
相关论文
共 74 条
[1]   Using probabilistic and decision-theoretic methods in treatment and prognosis modeling [J].
Andreassen, S ;
Riekehr, C ;
Kristensen, B ;
Schonheyder, HC ;
Leibovici, L .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 1999, 15 (02) :121-134
[2]  
Andreassen S, 1986, KNOWL REPRESENT, P366
[3]  
[Anonymous], 2014, C4. 5: programs for machine learning
[4]  
[Anonymous], 2001, P WORKSH EMP METH AR
[5]  
[Anonymous], 2013, SNOMED CT
[6]  
Barber D., 2011, Bayesian Reasoning and Machine Learning
[7]  
Bouckaert R.R., 2008, Bayesian Network Classifiers in Weka for Version 3-5-8
[8]  
BUNTINE W, 1991, UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, P52
[9]   Cancer survival in Australia, Canada, Denmark, Norway, Sweden, and the UK, 1995-2007 (the International Cancer Benchmarking Partnership): an analysis of population-based cancer registry data [J].
Coleman, M. P. ;
Forman, D. ;
Bryant, H. ;
Butler, J. ;
Rachet, B. ;
Maringe, C. ;
Nur, U. ;
Tracey, E. ;
Coory, M. ;
Hatcher, J. ;
McGahan, C. E. ;
Turner, D. ;
Marrett, L. ;
Gjerstorff, M. L. ;
Johannesen, T. B. ;
Adolfsson, J. ;
Lambe, M. ;
Lawrence, G. ;
Meechan, D. ;
Morris, E. J. ;
Middleton, R. ;
Steward, J. ;
Richards, M. A. .
LANCET, 2011, 377 (9760) :127-138
[10]  
Colot O, 1994, INF CRIT ABR CHANG P, P1855