π-Quasinormally embedded subgroups and p-nilpotency of finite groups

被引:1
作者
Xu, Yong [1 ]
Chen, Guiyun [2 ]
机构
[1] Henan Univ Sci & Technol, Sch Math & Stat, Luoyang, Henan, Peoples R China
[2] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Finite group; p-nilpotency; pi-quasinormally embedded subgroup; MAXIMAL-SUBGROUPS; SYLOW SUBGROUPS; NORMALITY;
D O I
10.1080/00927872.2020.1800721
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let P be a nontrivial p-group. A chain of subgroups 1 = P-0 <= P-1 <= . . . <= P-n - P is called a maximal chain of P provided that vertical bar P-i : Pi-1 vertical bar = p, i = 1, 2, ... , n: In this article, we determine the structure of finite groups having pi-quasinormally embedded subgroups of a maximal chain of Sylow subgroups. We obtain new characterizations of finite p-nilpotent and supersolvable groups.
引用
收藏
页码:421 / 426
页数:6
相关论文
共 16 条
[1]   Some results on p-nilpotence and supersolvability of finite groups [J].
Asaad, M. .
COMMUNICATIONS IN ALGEBRA, 2006, 34 (11) :4217-4224
[2]   INFLUENCE OF PI-QUASINORMALITY ON MAXIMAL-SUBGROUPS OF SYLOW SUBGROUPS OF FITTING SUBGROUP OF A FINITE-GROUP [J].
ASAAD, M ;
RAMADAN, M ;
SHAALAN, A .
ARCHIV DER MATHEMATIK, 1991, 56 (06) :521-527
[3]   On S-quasinormally embedded subgroups of finite groups [J].
Asaad, M ;
Heliel, AA .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 165 (02) :129-135
[4]   On minimal subgroups of finite groups [J].
Ballester-Bolinches, A ;
Pedraza-Aguilera, MC .
ACTA MATHEMATICA HUNGARICA, 1996, 73 (04) :335-342
[5]   Sufficient conditions for supersolubility of finite groups [J].
Ballester-Bolinches, A ;
Pedraza-Aguilera, MC .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 127 (02) :113-118
[6]   FINITE GROUPS WHOSE MINIMAL SUBGROUPS ARE NORMAL [J].
BUCKLEY, J .
MATHEMATISCHE ZEITSCHRIFT, 1970, 116 (01) :15-&
[7]  
Deskins W. E., 1963, MATH Z, V82, P125, DOI [DOI 10.1007/BF01111801, 10.1007/BF01111801]
[8]  
Doerk K., 1992, FINITE SOLVABLE GROU
[9]  
Huppert, 1967, ENDLICHE GRUPP
[10]  
KEGEL O. H., 1962, Math. Z., V78, P205, DOI DOI 10.1007/BF01195169