Inter-comparison of microwave satellite soil moisture retrievals over the Murrumbidgee Basin, southeast Australia

被引:106
作者
Su, Chun-Hsu [1 ]
Ryu, Dongryeol [1 ]
Young, Rodger I. [1 ]
Western, Andrew W. [1 ]
Wagner, Wolfgang [2 ]
机构
[1] Univ Melbourne, Dept Infrastruct Engn, Melbourne, Vic 3010, Australia
[2] Vienna Univ Technol, Dept Geodesy & Geoinformat, Vienna, Austria
基金
澳大利亚研究理事会;
关键词
Soil moisture; Remote sensing; AMSR-E; SMOS; ASCAT; Validation; ERS SCATTEROMETER; VALIDATION; PRODUCTS; ASSIMILATION; ERROR; VARIABILITY; PERFORMANCE; PREDICTION; IMPACT; MODEL;
D O I
10.1016/j.rse.2013.02.016
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The use of satellite-based soil moisture retrievals for hydrologic, meteorological and climatological applications is advancing significantly due to increasing capability and temporal coverage of current and future missions. Characterisation of the relative skill of soil moisture products from different satellite sensors on a common spatial grid is crucial to achieve synergetic applications. This paper therefore evaluates three soil moisture products from AMSR-E (Advanced Microwave Scanning Radiometer - Earth Observing System), ASCAT (Advanced Scatterometer) and SMOS (Soil Moisture and Ocean Salinity) in absolute soil moisture units and on a common grid, against in-situ observations from southeast Australia. Before renormalisation, the three products yield correlations of 0.63-0.71 and a similar root-mean-square difference (RMSD) in the order of 0.1 m(3) m(-3), although showing different levels of error contributions from bias, variance and correlations. The results are compared with land and precipitation data to investigate the sensitivity of their errors to land surface features. Three renormalisation strategies - minimum-maximum matching, mean/standard-deviation (mu-sigma) matching and cumulative distribution function (CDF) matching - are considered for correcting systematic differences between ground and satellite data. The renormalised satellite data is found to retain RMSDs of 0.04-0.06 m(3) m(-3) on average. The CDF method produces only marginal further improvements to correlations (0.67-0.75) and RMSDs compared to the mu-sigma approach. The renormalisations by mu-sigma and CDF methods also bring three products into better agreements with each other, but lead to strong correlations between RMSD and the dynamic range of in-situ soil moisture. (c) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 66 条
[1]   Evaluation of SMOS Soil Moisture Products Over Continental US Using the SCAN/SNOTEL Network [J].
Al Bitar, Ahmad ;
Leroux, Delphine ;
Kerr, Yann H. ;
Merlin, Olivier ;
Richaume, Philippe ;
Sahoo, Alok ;
Wood, Eric F. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (05) :1572-1586
[2]   Cross-evaluation of modelled and remotely sensed surface soil moisture with in situ data in southwestern France [J].
Albergel, C. ;
Calvet, J. -C. ;
de Rosnay, P. ;
Balsamo, G. ;
Wagner, W. ;
Hasenauer, S. ;
Naeimi, V. ;
Martin, E. ;
Bazile, E. ;
Bouyssel, F. ;
Mahfouf, J. -F. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2010, 14 (11) :2177-2191
[3]   An evaluation of ASCAT surface soil moisture products with in-situ observations in Southwestern France [J].
Albergel, C. ;
Ruediger, C. ;
Carrer, D. ;
Calvet, J. -C. ;
Fritz, N. ;
Naeimi, V. ;
Bartalis, Z. ;
Hasenauer, S. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2009, 13 (02) :115-124
[4]   Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations [J].
Albergel, Clement ;
de Rosnay, Patricia ;
Gruhier, Claire ;
Munoz-Sabater, Joaquin ;
Hasenauer, Stefan ;
Isaksen, Lars ;
Kerr, Yann ;
Wagner, Wolfgang .
REMOTE SENSING OF ENVIRONMENT, 2012, 118 :215-226
[5]  
Australian Bureau of Rural Science, 2010, LAND US AUSTR VERS 4
[6]   Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe [J].
Brocca, L. ;
Hasenauer, S. ;
Lacava, T. ;
Melone, F. ;
Moramarco, T. ;
Wagner, W. ;
Dorigo, W. ;
Matgen, P. ;
Martinez-Fernandez, J. ;
Llorens, P. ;
Latron, J. ;
Martin, C. ;
Bittelli, M. .
REMOTE SENSING OF ENVIRONMENT, 2011, 115 (12) :3390-3408
[7]   Spatial-temporal variability of soil moisture and its estimation across scales [J].
Brocca, L. ;
Melone, F. ;
Moramarco, T. ;
Morbidelli, R. .
WATER RESOURCES RESEARCH, 2010, 46
[8]   Validation of ERS scatterometer-derived soil moisture data in the central part of the Duero Basin, Spain [J].
Ceballos, A ;
Scipal, K ;
Wagner, W ;
Martínez-Fernández, J .
HYDROLOGICAL PROCESSES, 2005, 19 (08) :1549-1566
[9]   Evaluation of SMOS retrievals of soil moisture over the central United States with currently available in situ observations [J].
Collow, Thomas W. ;
Robock, Alan ;
Basara, Jeffrey B. ;
Illston, Bradley G. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117
[10]   Estimating precipitation errors using spaceborne surface soil moisture retrievals [J].
Crow, W. T. ;
Bolten, J. D. .
GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (08)