Spinors and the Weyl tensor classification in six dimensions

被引:6
作者
Batista, Carlos [1 ]
da Cunha, Bruno Carneiro [1 ]
机构
[1] Univ Fed Pernambuco, Dept Fis, BR-50670901 Recife, PE, Brazil
关键词
GOLDBERG-SACHS THEOREM; COMPLEX; FIELDS; MASS;
D O I
10.1063/1.4804991
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Aspinorial approach to six-dimensional differential geometry is constructed and used to analyze tensor fields of low rank, with special attention to the Weyl tensor. We perform a study similar to the four-dimensional case, making full use of the SO(6) symmetry to uncover results not easily seen in the tensorial approach. Using spinors, we propose a classification of the Weyl tensor by reinterpreting it as a map from 3-vectors to 3-vectors. This classification is shown to be intimately related to the integrability of maximally isotropic subspaces, establishing a natural framework to generalize the Goldberg-Sachs theorem. We work in complexified spaces, showing that the results for any signature can be obtained by taking the desired real slice. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:25
相关论文
共 88 条
[1]  
[Anonymous], ARXIV10112175
[2]  
Batista C., ARXIV12054666
[3]  
Batista C., ARXIV12045133
[4]  
Batista C., GEN RELATIV GRAVIT
[5]  
Batista C., ARXIV13012016
[6]   On the Weyl tensor classification in all dimensions and its relation with integrability properties [J].
Batista, Carlos .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (04)
[7]   Weyl tensor classification in four-dimensional manifolds of all signatures [J].
Batista, Carlos .
GENERAL RELATIVITY AND GRAVITATION, 2013, 45 (04) :785-798
[8]   One-Loop Calculations with BlackHat [J].
Berger, C. F. ;
Bern, Z. ;
Dixon, L. J. ;
Cordero, F. Febres ;
Forde, D. ;
Ita, H. ;
Kosower, D. A. ;
Maitre, D. .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2008, 183 :313-319
[9]  
Berger C. F., ARXIV08073705
[10]   Direct proof of the tree-level scattering amplitude recursion relation in Yang-Mills theory [J].
Britto, R ;
Cachazo, F ;
Feng, B ;
Witten, E .
PHYSICAL REVIEW LETTERS, 2005, 94 (18)