Hyperbolic systems of conservation laws with Lipschitz continuous flux-functions: The Riemann problem

被引:10
作者
Correia, J [1 ]
LeFloch, PG
Thanh, MD
机构
[1] Univ Tecn Lisboa, Inst Super Tecn, P-1096 Lisbon, Portugal
[2] Ecole Polytech, CNRS, Ctr Math Appl, UMR 7641, F-91128 Palaiseau, France
来源
BOLETIM DA SOCIEDADE BRASILEIRA DE MATEMATICA | 2001年 / 32卷 / 03期
关键词
hyperbolic conservation law; entropy solution; Riemann problem; Lipschitz continuous flux; multivalued representative;
D O I
10.1007/BF01233668
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For strictly hyperbolic systems of conservation laws with Lipschitz continuous flux-functions we generalize Lax's genuine nonlinearity condition and shock admissibility inequalities and we solve the Riemann problem when the left- and right-hand initial data are sufficiently close. Our approach is based on the concept of multivalued representatives of L-infinity functions and a generalized calculus for Lipschitz continuous mappings. Several interesting features arising with Lipschitz continuous flux-functions come to light from our analysis.
引用
收藏
页码:271 / 301
页数:31
相关论文
共 7 条
[1]  
Clarke F.H., 1990, CLASSICS APPL MATH, V5
[2]  
DAFERMOS CM, 1977, INDIANA U MATH J, V26, P1097, DOI 10.1512/iumj.1977.26.26088
[3]  
Filippov A.F., 1988, MATH ITS APPL SOVIET, V18
[4]  
LAX PD, 1973, C BOARD MATH SCI, V11
[5]   PROPAGATING PHASE BOUNDARIES - FORMULATION OF THE PROBLEM AND EXISTENCE VIA THE GLIMM METHOD [J].
LEFLOCH, P .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 123 (02) :153-197
[6]  
Lefloch P., 2002, ETH LECT NOTES SERIE
[7]  
Maso G.D., 1995, J MATH PURE APPL, V74, P483