Bayesian information criterion based data-driven state of charge estimation for lithium-ion battery

被引:18
|
作者
Liu, Xingtao [1 ]
Yang, Jiacheng [1 ]
Wang, Li [1 ]
Wu, Ji [1 ,2 ]
机构
[1] Hefei Univ Technol, Sch Automot & Transportat Engn, Hefei 230009, Peoples R China
[2] Engn Res Ctr Intelligent Transportat & Cooperat Ve, Hefei 230009, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium -ion battery; State of charge estimation; Data; -driven; Bayesian information criterion; Support vector regression algorithm; OF-CHARGE; SYSTEM;
D O I
10.1016/j.est.2022.105669
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate state of charge (SOC) estimation is essential for the safe and reliable operation of Li-ion batteries. To solve the problem of poor generalisation caused by over-fitting, this paper presents a combination algorithm based on feature selection to estimate battery SOC. Firstly, a portion of the features is extracted from the extended Kalman filtering (EKF) results. It forms the set of features to be selected with four other measured features. Secondly, the optimal feature subset is adopted by designing a wrapped feature screening framework based on the Bayesian information criterion (BIC). Finally, the selected combination of features is adopted to train the support vector regression (SVR) model, which is applied to the battery SOC estimation. The experimental results reveal that the combination strategy of EKF and SVR improves the accuracy of SOC estimation. The optimal SVR model based on the feature selection criterion shows better generalisation. Better estimation results in four driving conditions are achieved, and the root-mean-square error of the battery SOC estimation is decreased by at least 64.1 % and 56.5 % compared to the EKF algorithm and SVR algorithm driven by full feature, respectively.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Lithium-ion Battery State of Charge Estimation based on Moving Horizon
    Ma Yan
    Zhou Xiuwen
    Zhang Jixing
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 5002 - 5007
  • [32] State of Charge Estimation of Lithium-Ion Battery Based on IDRSN and BiGRU
    Zhang, Jiahao
    Chen, Jiadui
    He, Ling
    Liu, Dan
    Yang, Kai
    Liu, Qinghua
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2024, 21 (03)
  • [33] Review on progress of data-driven based health state estimation for lithium-ion batteries
    Jin S.
    Dong J.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2024, 45 (03): : 45 - 59
  • [34] State-of-health estimation and knee point identification of lithium-ion battery based on data-driven and mechanism model
    Ni, Yulong
    Song, Kai
    Pei, Lei
    Li, Xiaoyu
    Wang, Tiansi
    Zhang, He
    Zhu, Chunbo
    Xu, Jianing
    APPLIED ENERGY, 2025, 385
  • [35] Data-Driven Prediction Methods for Lithium-Ion Battery State of Health Based on Elbow Rule
    Zhang, Liu
    Xing, Bo
    Gao, Yanbing
    Yao, Lei
    Zhao, Dengfeng
    Ding, Jinquan
    Li, Yanyan
    IEEE ACCESS, 2024, 12 : 183581 - 183595
  • [36] Data-driven available capacity estimation of lithium-ion batteries based on fragmented charge capacity
    Zhen Zhang
    Xin Gu
    Yuhao Zhu
    Teng Wang
    Yichang Gong
    Yunlong Shang
    Communications Engineering, 4 (1):
  • [37] Data-driven Comprehensive Evaluation of Lithium-ion Battery State of Health and Abnormal Battery Screening
    Jia J.
    Hu X.
    Deng Z.
    Xu H.
    Xiao W.
    Han F.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2021, 57 (14): : 141 - 149and159
  • [38] Data-driven Prognostics and Remaining Useful Life Estimation for Lithium-ion Battery: A Review
    LIU Datong
    ZHOU Jianbao
    PENG Yu
    Instrumentation, 2014, 01 (01) : 59 - 70
  • [39] Data-driven battery capacity estimation based on partial discharging capacity curve for lithium-ion batteries
    Peng, Kaile
    Deng, Zhongwei
    Bao, Zhibin
    Hu, Xiaosong
    JOURNAL OF ENERGY STORAGE, 2023, 67
  • [40] A hybrid data-driven approach for state of health estimation in lithium-ion batteries
    Ding, Can
    Guo, Qing
    Zhang, Lulu
    Wang, Tao
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 67 - 83