A splitting theorem for nonnegatively curved Alexandrov spaces

被引:7
作者
Worner, Andreas
机构
[1] 72070 Tübingen
关键词
MANIFOLDS;
D O I
10.2140/gt.2012.16.2391
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Alexandrov spaces of nonnegative curvature whose boundaries consist of several strata of codimension 1. If the space is compact and the common intersection of all boundary strata is empty, then the space is a metric product. In particular, this is fulfilled if the compact space has dimension n and contains more than n+1 boundary strata. The splitting factors are in general non-flat.
引用
收藏
页码:2391 / 2426
页数:36
相关论文
共 32 条
  • [1] A cone splitting theorem for Alexandrov spaces
    Alexander, SB
    Bishop, RL
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2005, 218 (01) : 1 - 15
  • [2] [Anonymous], 2007, SURVEYSIN DIFFERENTI, V11, P137
  • [3] Burago D., 2001, A Course in Metric Geometry, DOI [10.1090/gsm/033, DOI 10.1090/GSM/033]
  • [4] Burago Y., 1992, USP MAT NAUK, V47, P3
  • [5] STRUCTURE OF COMPLETE MANIFOLDS OF NONNEGATIVE CURVATURE
    CHEEGER, J
    GROMOLL, D
    [J]. ANNALS OF MATHEMATICS, 1972, 96 (03) : 413 - 443
  • [6] Cheeger Jeff., 1971, J. Differential Geometry, V6, P119, DOI 10.4310/jdg/1214430220
  • [7] A RADIUS SPHERE THEOREM
    GROVE, K
    PETERSEN, P
    [J]. INVENTIONES MATHEMATICAE, 1993, 112 (03) : 577 - 583
  • [8] Kapovitch V., 2007, SURV DIFFER GEOM, V11, P103
  • [9] Lytchak A., 2005, [Алгебра и анализ, St. Petersburg Mathematical Journal, Algebra i analiz], V17, P139
  • [10] Lytchak A, 2001, BONNER MATH SCHRIFTE, V347