Vertical Graphene@Carbon Fiber Covered with MnO2 Flower-Like Nanostructures via Electrodeposition for High-Performance Supercapacitors

被引:10
作者
Zhang, Zhiqiang [1 ]
Xiao, Yu [1 ]
Zhang, Yan [1 ]
Zhang, Wei [2 ]
机构
[1] Chongqing Univ, Coll Mat Sci & Engn, Chongqing 400044, Peoples R China
[2] Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing 400714, Peoples R China
基金
中国国家自然科学基金;
关键词
MnO2; Vertical Graphene@Carbon Fiber; Electrodeposition; Synergistic Effect; Supercapacitor; BINDER-FREE ELECTRODES; DECORATED NICKEL FOAM; NANOSHEET ARRAYS; FACILE SYNTHESIS; ENERGY-STORAGE; DOPED GRAPHENE; NANOPARTICLES; COMPOSITE; NITROGEN; CLOTH;
D O I
10.1166/jnn.2019.16527
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The research systematically investigated the synthesis process and electrochemical performances of willowy integrated MnO2/vertical graphene@carbon fiber (MnO2/GCF) hybrids. With the highly willowy carbon fiber as skeleton, graphene and ultrathin MnO2 nanosheets were grown via plasma enhanced chemical vapor deposition and cyclic voltammetric electrodeposition, in sequence respectively. The triaxial (3D) MnO2/GCF networks demonstrated highly multihole structure. Ascribed to the good performance, MnO2/GCF nanomaterials can be manufactured into supercapacitor electrodes straightway and doesn't use binder as well as conductive agents. In addition, the electrochemical performance of the MnO2 nanoflakes increased not only because of the fast ion diffusion among the triaxial porous vertical graphene@carbon fiber framework but also excellent contact of its' interfaces and outstanding synergistic effect between each other. In this paper, the capacitance performance of MnO2/GCF composite samples with different electrodeposition time of MnO2 nanoflakes was investigated. The results showed that the MnO2/GCF composite with electrodeposition time of 64 min (MnO2/GCF-64) had the highest specific capacitance of 565.23 F g(-1) when the current density was 1 A g(-1) and excellent cycling stability (82% specific capacitance retention after 2000 cycles). The willowy vertical graphene@carbon fiber substrate covered with flower-like MnO2 nanosheets can serve as high performance supercapacitor, which enjoys a promising application prospect.
引用
收藏
页码:5864 / 5870
页数:7
相关论文
共 50 条
  • [21] Facile synthesis of flower-like Cu-Zn bimetallic electrodes for high-performance supercapacitors
    Prasankumar, Thibeorchews
    Kang, Dong Jae
    Kim, Minhyung
    Lim, Hyung-Tae
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2023, 18 (10):
  • [22] Polydopamine and MnO2 core-shell composites for high-performance supercapacitors
    Hou, Ding
    Tao, Haisheng
    Zhu, Xuezhen
    Li, Maoguo
    APPLIED SURFACE SCIENCE, 2017, 419 : 580 - 585
  • [23] Outstanding supercapacitor performance with intertwined flower-like NiO/MnO2/CNT electrodes
    Pecenek, Hilal
    Dokan, Fatma Kilic
    Onses, M. Serdar
    Yilmaz, Erkan
    Sahmetlioglu, Ertugrul
    MATERIALS RESEARCH BULLETIN, 2022, 149
  • [24] Rational design of flower-like MnO2/Ti3C2Tx composite electrode for high performance supercapacitors
    Xia, Chenji
    Luo, Yijia
    Bin, Xiaoqing
    Gao, Bowen
    Que, Wenxiu
    NANOTECHNOLOGY, 2023, 34 (25)
  • [25] Self-grown MnO2 nanosheets on carbon fiber paper as high-performance supercapacitors electrodes
    Dang, Wenhui
    Dong, Chengjun
    Zhang, Zhifang
    Chen, Gang
    Wang, Yude
    Guan, Hongtao
    ELECTROCHIMICA ACTA, 2016, 217 : 16 - 23
  • [26] 2D Flower-like Porous Nanostructures of Layered SnS2 for High-Performance Supercapacitors: Correlating Theoretical and Experimental Studies
    Mandal, Debabrata
    Halder, Joyanti
    De, Puja
    Chowdhury, Ananya
    Biswas, Sudipta
    Chandra, Amreesh
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (06) : 7735 - 7747
  • [27] Carbon Dot Regulating NiSe/MnO2 Heterostructures for High-Performance Supercapacitors
    Xie, Xiaotian
    Xu, Yi
    Liu, Jie
    Wang, Dongtian
    Lv, Tingting
    Yuan, Fanshu
    Zhang, Qianli
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (49) : 68157 - 68168
  • [28] MnO2/carbon nanocomposite based on silkworm excrement for high-performance supercapacitors
    Zhang, Pian
    Wu, Yun-hao
    Sun, Hao-ran
    Zhao, Jia-qi
    Cheng, Zhi-ming
    Kang, Xiao-hong
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2021, 28 (10) : 1735 - 1744
  • [29] Synthesis and control of high-performance MnO2/carbon nanotubes nanocomposites for supercapacitors
    Wang, Jia-Wei
    Chen, Ya
    Chen, Bai-Zhen
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 688 : 184 - 197
  • [30] Facile fabrication of binder-free reduced graphene oxide/MnO2/Ni foam hybrid electrode for high-performance supercapacitors
    Zhao, Zhiyong
    Shen, Ting
    Liu, Zhihua
    Zhong, Qishi
    Qin, Yujun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 812