Synthesis and characterization of TiO2 pillared montmorillonites: Application for methylene blue degradation

被引:59
|
作者
Chen, Daimei [1 ]
Du, Gaoxiang [1 ]
Zhu, Qian [1 ]
Zhou, Fengsan [1 ]
机构
[1] China Univ Geosci, Sch Mat Sci & Technol, Natl Lab Mineral Mat, Beijing 100083, Peoples R China
关键词
Montmorillonite; Modification; Titania; Pillared clay; Surfactant; Methylene blue; PHOTOCATALYTIC DEGRADATION; CLAY; WATER; TITANIA; NANOPARTICLES; ANATASE;
D O I
10.1016/j.jcis.2013.07.049
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
TiO2 pillared clay composites were prepared by modifying of montmorillonite (Mt) with cetyl-trimethyammoniumbromide (CTAB) and then using an acidic solution of hydrolyzed Ti alkoxide to intercalate into the interlayer space of the organic modified Mt. The as-prepared materials were characterized by XRD, FTIR, TEM, SEM TG-DTA, specific surface area and porosity measurements. The composites had a porous delaminated structure with pillared fragments and well dispersed TiO2 nanoparticles. Introduction of CTAB into the synthetic system accelerated the hydrolysis and condensation of the Ti source, which promoted TiO2 formation. In addition, the CTAB also significantly increased the porosity and surface area of the composites. A number of anatase particles, with crystal sizes of 5-10 nm, were homogenously distributed on the surface of the Mt as the result of the templating role of CTAB. The resultant TiO2 pillared Mt exhibited good thermal stability as indicated by its surface area after calcination at 800 degrees C. No phase transformations from anatase to rutile were observed even under calcination at 900 degrees C. The grain size of the anatase in prepared sample increased from 2.67 nm to 13.42 nm as the calcination temperature increased from 300 degrees C to 900 degrees C. The photocatalytic performance of these new porous materials was evaluated by using methylene blue degradation. The composite exhibited better photocatalytic property than P 25. The maximum removal efficiency of this composite was up to 99% within 60 min. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:151 / 157
页数:7
相关论文
共 50 条
  • [31] Photocatalytic Degradation of Methylene Blue Using TiO2 Impregnated Diatomite
    Zuo, Ranfang
    Du, Gaoxiang
    Zhang, Weiwei
    Liu, Lianhua
    Liu, Yanming
    Mei, Lefu
    Li, Zhaohui
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2014, 2014
  • [32] Photocatalytic activity of TiO2 nanomaterials for methylene blue dye degradation
    Lee, Deuk Yong
    Son, Siwon
    Jeon, Min-Seok
    Lee, Myung-Hyun
    Kim, Bae-Yeon
    ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD) 2016, 2016, 9798
  • [33] Titamium oxide (TiO2) assisted photocatalytic degradation of methylene blue
    Madhu, G. M.
    Raj, M. A. Lourdu Antony
    Pai, K. Vasantha Kumar
    JOURNAL OF ENVIRONMENTAL BIOLOGY, 2009, 30 (02): : 259 - 264
  • [34] TiO2 Nanofilms on Polymeric Substrates for the Photocatalytic Degradation of Methylene Blue
    Maleki, Hesam
    Bertola, Volfango
    ACS APPLIED NANO MATERIALS, 2019, 2 (11): : 7237 - 7244
  • [35] Methylene Blue and Phenol Photocatalytic Degradation on Nanoparticles of Anatase TiO2
    Bubacz, Kamila
    Choina, Julia
    Dolat, Diana
    Morawski, Antoni W.
    POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2010, 19 (04): : 685 - 691
  • [36] Effect of TiO2 phase on the photocatalytic degradation of methylene blue dye
    Tichapondwa, S. M.
    Newman, J. P.
    Kubheka, O.
    PHYSICS AND CHEMISTRY OF THE EARTH, 2020, 118 (118-119)
  • [37] Influence of operational parameters on the TiO2 photocatalytic degradation of Methylene blue
    Sohrabi, H.
    Mozafari, A.
    Sajjadnejad, M.
    Tabaian, S. H.
    Omidvar, H.
    MATERIALS SCIENCE AND TECHNOLOGY, 2016, 32 (12) : 1282 - 1288
  • [38] Catalyst Deactivation During Photocatalytic Degradation of Methylene Blue with TiO2
    Robert, Johannes
    Juestel, Thomas
    Ulber, Roland
    Jordan, Volkmar
    CHEMIE INGENIEUR TECHNIK, 2018, 90 (05) : 643 - 652
  • [39] Photocatalytic methylene blue degradation on multilayer transparent TiO2 coatings
    Dulian, P.
    Nachit, W.
    Jaglarz, J.
    Zieba, P.
    Kanak, J.
    Zukowski, W.
    OPTICAL MATERIALS, 2019, 90 : 264 - 272
  • [40] Kinetics of Photocatalytic Degradation of Methylene Blue in a TiO2 Slurry Reactor
    Sheetal, Ovhal D.
    Pragati, Thakur
    RESEARCH JOURNAL OF CHEMISTRY AND ENVIRONMENT, 2010, 14 (04): : 9 - 13