METRIC EVALUATION PIPELINE FOR 3D MODELING OF URBAN SCENES

被引:20
作者
Bosch, M. [1 ]
Leichtman, A. [1 ]
Chilcott, D. [1 ]
Goldberg, H. [1 ]
Brown, M. [1 ]
机构
[1] Johns Hopkins Univ, Appl Phys Lab, Baltimore, MD 21218 USA
来源
ISPRS HANNOVER WORKSHOP: HRIGI 17 - CMRT 17 - ISA 17 - EUROCOW 17 | 2017年 / 42-1卷 / W1期
关键词
photogrammetry; 3D modeling; metric evaluation; benchmark; open source; multi-view stereo; satellite imagery;
D O I
10.5194/isprs-archives-XLII-1-W1-239-2017
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Publicly available benchmark data and metric evaluation approaches have been instrumental in enabling research to advance state of the art methods for remote sensing applications in urban 3D modeling. Most publicly available benchmark datasets have consisted of high resolution airborne imagery and lidar suitable for 3D modeling on a relatively modest scale. To enable research in larger scale 3D mapping, we have recently released a public benchmark dataset with multi-view commercial satellite imagery and metrics to compare 3D point clouds with lidar ground truth. We now define a more complete metric evaluation pipeline developed as publicly available open source software to assess semantically labeled 3D models of complex urban scenes derived from multi-view commercial satellite imagery. Evaluation metrics in our pipeline include horizontal and vertical accuracy and completeness, volumetric completeness and correctness, perceptual quality, and model simplicity. Sources of ground truth include airborne lidar and overhead imagery, and we demonstrate a semi-automated process for producing accurate ground truth shape files to characterize building footprints. We validate our current metric evaluation pipeline using 3D models produced using open source multi-view stereo methods. Data and software is made publicly available to enable further research and planned benchmarking activities.
引用
收藏
页码:239 / 246
页数:8
相关论文
共 20 条
[1]   Quality assessment of 3D building data [J].
Akca, Devrim ;
Freeman, Mark ;
Sargent, Isabel ;
Gruen, Armin .
PHOTOGRAMMETRIC RECORD, 2010, 25 (132) :339-355
[2]  
[Anonymous], 2006, 2006 IEEE COMP SOC C
[3]  
[Anonymous], ISPRS ANN
[4]  
[Anonymous], 2017, OGC STANDARDS SUPPOR
[5]  
Bosch M., 2016, P IEEE APPL IM PATT
[6]  
Campos-Taberner M., 2016, IEEE J SELECTED TOPI, V9
[7]   Information from imagery: ISPRS scientific vision and research agenda [J].
Chen, Jun ;
Dowman, Ian ;
Li, Songnian ;
Li, Zhilin ;
Madden, Marguerite ;
Mills, Jon ;
Paparoditis, Nicolas ;
Rottensteiner, Franz ;
Sester, Monika ;
Toth, Charles ;
Trinder, John ;
Heipke, Christian .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2016, 115 :3-21
[8]  
Hirschmüller H, 2008, IEEE T PATTERN ANAL, V30, P328, DOI 10.1109/TPAMl.2007.1166
[9]  
Isenburg M., 2016, LAStools - efficient LiDAR processing software
[10]  
Koch T., 2016, P IEEE C COMP VIS PA, P19