Axial-Field Magnetic Quench Antenna for the Superconducting Accelerator Magnets

被引:1
作者
Marchevsky, Maxim [1 ]
Hafalia, Aurelio [1 ]
Cheng, Daniel [1 ]
Prestemon, Soren [1 ]
Sabbi, Gianluca [1 ]
Bajas, Hugo [2 ]
Chlachidze, Guram [3 ]
机构
[1] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[2] European Org Nucl Res CERN, CH-1211 Geneva, Switzerland
[3] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA
关键词
Magnetic probes; superconducting accelerator magnets;
D O I
10.1109/TASC.2014.2374536
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We have developed and tested a novel magnetic inductive antenna for detecting and localizing quenches and flux jumps in superconducting accelerator magnets during ramping and steady-state operations. The antenna principle is based upon sensing temporal variation of the axial field gradient in the magnet bore that is specific to propagating quench. Two antenna configurations were developed and built, optimized respectively for sensing disturbances of the off-axis (for the dipole magnet) and axial (for the quadrupole magnet) gradient of the axial field. The antennas were qualified during tests of LBNL's high-field dipole, HD3b, and LARP's Nb3Sn quadrupole HQ02b. A reliable and accurate localization of quenches and flux jumps was demonstrated. Upon ramping up the magnet current, we observed peculiar dynamics of the magnetic disturbances travelling along the cable at velocities of similar to 800 m/s. Also, details of slow quench propagation in the HQ02 quadrupole at a small fraction of operational current were detected and recorded.
引用
收藏
页数:5
相关论文
共 7 条
[1]   Cold Test Results of the LARP HQ Nb3Sn Quadrupole Magnet at 1.9 K [J].
Bajas, H. ;
Ambrosio, G. ;
Anerella, M. ;
Bajko, M. ;
Bossert, R. ;
Caspi, S. ;
Chiuchiolo, A. ;
Chlachidze, G. ;
Dietderich, D. ;
Dunkel, O. ;
Felice, H. ;
Ferracin, P. ;
Feuvrier, J. ;
Fiscarelli, L. ;
Ghosh, A. ;
Giloux, C. ;
Godeke, A. ;
Hafalia, A. R. ;
Marchevsky, M. ;
Russenschuck, S. ;
Sabbi, G. L. ;
Salmi, T. ;
Schmalzle, J. ;
Todesco, E. ;
Wanderer, P. ;
Wang, X. ;
Yu, M. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2013, 23 (03)
[2]   Current redistribution between strands and quench process in a superconducting cable [J].
Buznikov, NA ;
Pukhov, AA ;
Rakhmanov, AL ;
Vysotsky, VS .
CRYOGENICS, 1996, 36 (04) :275-281
[3]   Improved quench localization and quench propagation velocity measurements in the LHC superconducting dipole magnets [J].
Calvi, M ;
Floch, E ;
Kouzue, S ;
Siemko, A .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2005, 15 (02) :1209-1212
[4]   Quench localization and current redistribution after quench in superconducting dipole magnets wound with Rutherford-type cables [J].
Jongeleen, S ;
Leroy, D ;
Siemko, A ;
Wolf, R .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1997, 7 (02) :179-182
[5]  
LEROY D, 1993, IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL 3, NO 1, MARCH 1993 PTS 2-4, P781
[6]   Magnetic Detection of Quenches in High-Field Accelerator Magnets [J].
Marchevsky, M. ;
DiMarco, J. ;
Felice, H. ;
Hafalia, A. R. ;
Joseph, J. ;
Lizarazo, J. ;
Wang, X. ;
Sabbi, G. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2013, 23 (03)
[7]   Quench antenna studies of mechanical and quench performance in Fermilab interaction region quadrupoles for LHC [J].
Tartaglia, M. A. ;
Feher, S. ;
Hocker, A. ;
Lamm, M. ;
Schlabach, P. ;
Sylvester, C. ;
Tompkins, J. C. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2006, 16 (02) :441-444