A COUPLED SCHEMA OF PROBABILISTIC ATLAS AND STATISTICAL SHAPE AND APPEARANCE MODEL FOR 3D PROSTATE SEGMENTATION IN MR IMAGES

被引:0
|
作者
Ghose, S. [1 ]
Mitra, J. [1 ]
Oliver, A. [1 ]
Marti, R. [1 ]
Llado, X. [1 ]
Freixenet, J. [1 ]
Vilanova, J. C. [2 ]
Sidibe, D. [3 ]
Meriaudeau, F. [3 ]
机构
[1] Univ Girona, Comp Vis & Robot Grp, Girona, Spain
[2] Girona Magnet Resonance Ctr, Girona, Spain
[3] Univ Bourgogne, CNRS, Le2i, UMR 6306, Le Creusot, France
来源
2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012) | 2012年
关键词
Prostate segmentation; probabilistic atlas; statistical shape and appearance model;
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
A hybrid framework of probabilistic atlas and statistical shape and appearance model (SSAM) is proposed to achieve 3D prostate segmentation. An initial 3D segmentation of the prostate is obtained by registering the probabilistic atlas to the test dataset with deformable Demons registration. The initial results obtained are used to initialize multiple SSAMs corresponding to the apex, central and base regions of the prostate gland to incorporate local variabilities. Multiple mean parametric models of shape and appearance are derived from principal component analysis of prior shape and intensity information of the prostate from the training data. The parameters are then modified with the prior knowledge of the optimization space to achieve 2D segmentation. The 2D labels are registered to the 3D labels generated using probabilistic atlas to constrain the pose variation and generate valid 3D shapes. The proposed method achieves a mean Dice similarity coefficient value of 0.89 +/- 0.11 and mean Hausdorff distance of 3.05 +/- 2.25 mm when validated with 15 prostate volumes of a public dataset in a leave-one-out validation framework.
引用
收藏
页码:541 / 544
页数:4
相关论文
共 37 条
  • [21] Slice-based prostate segmentation in 3D US images based on continuity constraint
    Ding, M
    Gyacskov, I
    Yuan, X
    Drangova, M
    Fenster, A
    MEDICAL IMAGING 2004: VISUALIZATION, IMAGE-GUIDED PROCEDURES, AND DISPLAY, 2004, 5367 : 151 - 160
  • [22] 3D EAGAN: 3D edge-aware attention generative adversarial network for prostate segmentation in transrectal ultrasound images
    Liu, Mengqing
    Shao, Xiao
    Jiang, Liping
    Wu, Kaizhi
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2024, 14 (06) : 4067 - 4085
  • [23] Using Statistical Shape and Appearance Modelling to characterise the 3D shape and material properties of human lumbar vertebrae: A proof of concept study
    Day, G. A.
    Jones, A. C.
    Wilcox, R. K.
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2022, 126
  • [24] Automated Prostate Segmentation of Volumetric CT images Using 3D Deeply Supervised Dilated FCN
    Wang, Bo
    Lei, Yang
    Wang, Tonghe
    Dong, Xue
    Tian, Sibo
    Jiang, Xiaojun
    Jani, Ashesh B.
    Liu, Tian
    Curran, Walter J.
    Patel, Pretesh
    Yang, Xiaofeng
    MEDICAL IMAGING 2019: IMAGE PROCESSING, 2019, 10949
  • [25] ADC-Net: Adaptive Detail Compensation Network for Prostate Segmentation in 3D Transrectal Ultrasound Images
    Liu, Mengqing
    Wu, Kaizhi
    Jiang, Liping
    MEDICAL IMAGING 2023, 2023, 12470
  • [26] Prostate segmentation in 3D US images using the Cardinal-spline based discrete dynamic contour
    Ding, MY
    Chen, CJ
    Wang, YQ
    Gyacskov, I
    Fenster, A
    MEDICAL IMAGING 2003: VISUALIZATION, IMAGE-GUIDED PROCEDURES, AND DISPLAY, 2003, 5029 : 69 - 76
  • [27] DEEP LEARNING WITH ORTHOGONAL VOLUMETRIC HED SEGMENTATION AND 3D SURFACE RECONSTRUCTION MODEL OF PROSTATE MRI
    Cheng, Ruida
    Lay, Nathan
    Mertan, Francesca
    Turkbey, Baris
    Roth, Holger R.
    Lu, Le
    Gandler, William
    McCreedy, Evan S.
    Pohida, Thomas
    Choyke, Peter
    McAuliffe, Matthew J.
    Summers, Ronald M.
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 749 - 753
  • [28] Superpixel-based deep convolutional neural networks and active contour model for automatic prostate segmentation on 3D MRI scans
    Giovanni L. F. da Silva
    Petterson S. Diniz
    Jonnison L. Ferreira
    João V. F. França
    Aristófanes C. Silva
    Anselmo C. de Paiva
    Elton A. A. de Cavalcanti
    Medical & Biological Engineering & Computing, 2020, 58 : 1947 - 1964
  • [29] Superpixel-based deep convolutional neural networks and active contour model for automatic prostate segmentation on 3D MRI scans
    da Silva, Giovanni L. F.
    Diniz, Petterson S.
    Ferreira, Jonnison L.
    Franca, Joao V. F.
    Silva, Aristofanes C.
    de Paiva, Anselmo C.
    de Cavalcanti, Elton A. A.
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2020, 58 (09) : 1947 - 1964
  • [30] Pancreas segmentation from 3D abdominal CT images using patient-specific weighted-subspatial probabilistic atlases
    Karasawa, Kenichi
    Oda, Masahiro
    Hayashi, Yuichiro
    Nimura, Yukitaka
    Kitasaka, Takayuki
    Misawa, Kazunari
    Fujiwara, Michitaka
    Rueckert, Daniel
    Mori, Kensaku
    MEDICAL IMAGING 2015: IMAGE PROCESSING, 2015, 9413