Prediction of Forming Limit Diagrams for 22MnB5 in Hot Stamping Process

被引:37
|
作者
Li, Hongzhou [1 ]
Wu, Xin [2 ]
Li, Guangyao [1 ]
机构
[1] Hunan Univ, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Hunan, Peoples R China
[2] Wayne State Univ, Dept Mech Engn, Detroit, MI 48202 USA
基金
中国国家自然科学基金;
关键词
BBC2005 yield function; forming limit diagrams; hot stamping process; mechanical characterization; non-isothermal deformation; STRAIN-RATE; BEHAVIOR; SHEET; FLD;
D O I
10.1007/s11665-013-0491-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hot stamping of ultra-high strength steels possesses many superior characteristics over conventional room temperature forming process and is fairly attractive in improving strength and reducing weight of vehicle body product. However, the mechanical and failure behavior of hot stamping boron steel 22MnB5 are both strongly affected by strain hardening, temperature, strain rate, and microstructure. In this paper, the material yield and flow behavior of 22MnB5 within the temperature and strain rate range of hot stamping are described by an advanced anisotropic yield criterion combined with two different hardening laws. The elevated temperature forming limit diagram (ET-FLD) is constructed using the M-K theoretical analysis. The developed model was validated by comparing our predicted result with experimental data in the literature under isothermal conditions. Based on the verified model, the influence of temperature and strain rate on the forming limit curve for 22MnB5 steel under equilibrium isothermal condition are discussed. Furthermore, the transient forming limit diagram is developed by performing a transient forming process simulation under non-isothermal transient condition.
引用
收藏
页码:2131 / 2140
页数:10
相关论文
共 50 条
  • [1] Prediction of Forming Limit Diagrams for 22MnB5 in Hot Stamping Process
    Hongzhou Li
    Xin Wu
    Guangyao Li
    Journal of Materials Engineering and Performance, 2013, 22 : 2131 - 2140
  • [2] Investigation into the Hot-Forming Limit for 22MnB5 Hot-Forming Steel under a Stamping Process
    He, Wenwu
    Yang, Bin
    Zhang, Xuezhong
    Li, Min
    Sun, Shuli
    Wang, Bao
    Ma, Qingxian
    METALS, 2024, 14 (05)
  • [3] Comparative study of ductile fracture prediction of 22MnB5 steel in hot stamping process
    Shi, Dongyong
    Hu, Ping
    Ying, Liang
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2016, 84 (5-8): : 895 - 906
  • [4] Comparative study of ductile fracture prediction of 22MnB5 steel in hot stamping process
    Dongyong Shi
    Ping Hu
    Liang Ying
    The International Journal of Advanced Manufacturing Technology, 2016, 84 : 895 - 906
  • [5] Comparative study of ductile fracture prediction of 22MnB5 steel in hot stamping process
    Shi, Dongyong
    Hu, Ping
    Ying, Liang
    International Journal of Advanced Manufacturing Technology, 2016, 84 (5-8): : 895 - 906
  • [6] In situ observation on microstructure evolution of 22MnB5 in hot stamping process
    Kong, Ling
    Peng, Yan
    METALLURGICAL RESEARCH & TECHNOLOGY, 2019, 116 (02)
  • [7] Experimental and theoretical study on the hot forming limit of 22MnB5 steel
    F. F. Li
    M. W. Fu
    J. P. Lin
    X. N. Wang
    The International Journal of Advanced Manufacturing Technology, 2014, 71 : 297 - 306
  • [8] Experimental and theoretical study on the hot forming limit of 22MnB5 steel
    Li, F. F.
    Fu, M. W.
    Lin, J. P.
    Wang, X. N.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2014, 71 (1-4): : 297 - 306
  • [9] Investigation of 22MnB5 formability in hot stamping operations
    Turetta, A.
    Bruschi, S.
    Ghiotti, A.
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2006, 177 (1-3) : 396 - 400
  • [10] Basic investigations on the hot stamping steel 22MnB5
    Geiger, M.
    Merklein, M.
    Hoff, C.
    Sheet Metal 2005, 2005, 6-8 : 795 - 802