Band gap engineering of transition metal (Ni/Co) codoped in zinc oxide (ZnO) nanoparticles

被引:81
|
作者
Ali, Rai Nauman [1 ]
Naz, Hina [1 ]
Li, Jing [1 ]
Zhu, Xingqun [1 ]
Liu, Ping [1 ]
Xiang, Bin [1 ]
机构
[1] Univ Sci & Technol China, Dept Mat Sci & Engn, CAS Key Lab Mat Energy Convers, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Band gap; Nanoparticles; Green emission; Defects; Optical properties; ZnO; OPTICAL-PROPERTIES; MAGNETIC-PROPERTIES; CO; NANORODS; MN; NANOWIRE; NI; DEFECTS; NANOSTRUCTURES; LUMINESCENCE;
D O I
10.1016/j.jallcom.2018.02.072
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Here we report on tunable bandgap engineering of single phase (Ni/Co) codoped ZnO nanoparticles controlled by different dopant concentrations. The as-synthesized ZnO nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-visible near infrared spectroscopy (UV-VIS-NIR), photoluminescence (PL) spectroscopy, Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). In absorption spectra, a clear blue shift of 15 nm for the Ni/Co codoped ZnO nanoparticles was observed compared to pure ZnO nanoparticles. Moreover, it demonstrates that the value of energy bandgap changes from 3.55 eV to 3.71 eV by varying the dopant concentrations. Compared to pure ZnO nanoparticles, green emission PL peak intensity is significantly reduced in the doped ZnO nanoparticles, attributed to the significant decrease in intrinsic defects. Our results improve the understanding of optical and structural properties of Ni and Co codoped ZnO nanoparticles as these nanocrystalline structures could be potential candidates for optoelectronic devices. (c) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:90 / 95
页数:6
相关论文
共 50 条
  • [41] Controlling of optical band gap of the CdO films by zinc oxide
    Kati, Nida
    MATERIALS SCIENCE-POLAND, 2019, 37 (01): : 136 - 141
  • [42] MODELING THE ADSORPTION PROCESSES AND LUMINESCENCE PROPERTIES OF THE METAL OXIDE ZnO NANOPARTICLES
    Savka, S. S.
    Serednytski, A. S.
    Popovych, D. I.
    JOURNAL OF PHYSICAL STUDIES, 2023, 27 (04):
  • [43] Synthesis and Mn doped band gap engineering in SnS nanoparticles
    Pandey, B. K.
    Gopal, Ram
    MATERIALS LETTERS, 2020, 272
  • [44] SYNTHESIS OF ZINC OXIDE NANOPARTICLES BY THE REACTION OF ZINC METAL WITH ETHANOL
    Shah, M. A.
    MODERN PHYSICS LETTERS B, 2009, 23 (06): : 871 - 876
  • [45] Effect of doping 3d transition metal (Fe, Co, and Ni) on the electronic, magnetic and optical properties of pentagonal ZnO2 monolayer
    Zhang, Hong
    Wang, Na
    Wang, Shuling
    Zhang, Yongzhe
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2020, 117
  • [46] Arrays of ZnO/ZnxCd1-xSe Nanocables: Band Gap Engineering and Photovoltaic Applications
    Xu, Jun
    Yang, Xia
    Wang, Hongkang
    Chen, Xue
    Luan, Chunyan
    Xu, Zongxiang
    Lu, Zhenzhen
    Roy, V. A. L.
    Zhang, Wenjun
    Lee, Chun-Sing
    NANO LETTERS, 2011, 11 (10) : 4138 - 4143
  • [47] On the vibrational properties of transition metal doped ZnO: Surface defect, and bandgap engineering
    Lage, Viviane M. A.
    Rodriguez-Fernandez, Carlos
    Vieira, Felipe S.
    da Silva, Rafael T.
    Bernardi, Maria Ines B.
    de Lima Jr, Mauricio M.
    Cantarero, Andres
    de Carvalho, Hugo B.
    ACTA MATERIALIA, 2023, 259
  • [48] Microstructure, crystallographic and photoluminescence examination of Ni doped ZnO nanoparticles co-doped with Co by sol-gel method
    Anitha, S.
    Muthukumaran, S.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2017, 28 (17) : 12995 - 13005
  • [49] Band gap tuning and room temperature ferromagnetism in Co doped Zinc stannate nanostructures
    Sumithra, S.
    Jaya, N. Victor
    PHYSICA B-CONDENSED MATTER, 2016, 493 : 35 - 42
  • [50] A possibility to obtain room temperature ferromagnetism by transition metal doping of ZnO nanoparticles
    Wesselinowa, J. M.
    Apostolov, A. T.
    JOURNAL OF APPLIED PHYSICS, 2010, 107 (05)