Autonomous HVAC Control, A Reinforcement Learning Approach

被引:81
|
作者
Barrett, Enda [1 ,2 ]
Linder, Stephen [1 ,2 ]
机构
[1] Schneider Elect, Galway, Ireland
[2] Schneider Elect, Andover, MA 01810 USA
来源
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT III | 2015年 / 9286卷
关键词
HVAC control; Reinforcement learning; Bayesian learning;
D O I
10.1007/978-3-319-23461-8_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent high profile developments of autonomous learning thermostats by companies such as Nest Labs and Honeywell have brought to the fore the possibility of ever greater numbers of intelligent devices permeating our homes and working environments into the future. However, the specific learning approaches and methodologies utilised by these devices have never been made public. In fact little information is known as to the specifics of how these devices operate and learn about their environments or the users who use them. This paper proposes a suitable learning architecture for such an intelligent thermostat in the hope that it will benefit further investigation by the research community. Our architecture comprises a number of different learning methods each of which contributes to create a complete autonomous thermostat capable of controlling a HVAC system. A novel state action space formalism is proposed to enable a Reinforcement Learning agent to successfully control the HVAC system by optimising both occupant comfort and energy costs. Our results show that the learning thermostat can achieve cost savings of 10% over a programmable thermostat, whilst maintaining high occupant comfort standards.
引用
收藏
页码:3 / 19
页数:17
相关论文
共 50 条
  • [1] An online reinforcement learning approach for HVAC control
    Solinas, Francesco M.
    Macii, Alberto
    Patti, Edoardo
    Bottaccioli, Lorenzo
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [2] Reinforcement learning control approach for autonomous microgrids
    Mahmoud, M. S.
    Abouheaf, M.
    Sharaf, A.
    INTERNATIONAL JOURNAL OF MODELLING AND SIMULATION, 2021, 41 (01) : 1 - 10
  • [3] An Hybrid Model-Free Reinforcement Learning Approach for HVAC Control
    Solinas, Francesco M.
    Bellagarda, Andrea
    Macii, Enrico
    Patti, Edoardo
    Bottaccioli, Lorenzo
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2021 5TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE), 2021,
  • [4] Energy Management Model for HVAC Control Supported by Reinforcement Learning
    Macieira, Pedro
    Gomes, Luis
    Vale, Zita
    ENERGIES, 2021, 14 (24)
  • [5] Enhancing HVAC Control Efficiency: A Hybrid Approach Using Imitation and Reinforcement Learning
    Kadamala, Kevlyn
    Chambers, Des
    Barrett, Enda
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES-APPLIED DATA SCIENCE TRACK, PT IX, ECML PKDD 2024, 2024, 14949 : 256 - 270
  • [6] Modelling building HVAC control strategies using a deep reinforcement learning approach
    Nguyen, Anh Tuan
    Pham, Duy Hoang
    Oo, Bee Lan
    Santamouris, Mattheos
    Ahn, Yonghan
    Lim, Benson T. H.
    ENERGY AND BUILDINGS, 2024, 310
  • [7] Safe HVAC Control via Batch Reinforcement Learning
    Liu, Hsin-Yu
    Balaji, Bharathan
    Gao, Sicun
    Gupta, Rajesh
    Hong, Dezhi
    2022 13TH ACM/IEEE INTERNATIONAL CONFERENCE ON CYBER-PHYSICAL SYSTEMS (ICCPS 2022), 2022, : 181 - 192
  • [8] Transfer Learning Applied to Reinforcement Learning-Based HVAC Control
    Lissa P.
    Schukat M.
    Barrett E.
    SN Computer Science, 2020, 1 (3)
  • [9] Enhanced Strategies for Off-Policy Reinforcement Learning Algorithms in HVAC Control
    Chen, Zhe
    Jia, Qingshan
    2024 14TH ASIAN CONTROL CONFERENCE, ASCC 2024, 2024, : 1691 - 1696
  • [10] Accelerate Online Reinforcement Learning for Building HVAC Control with Heterogeneous Expert Guidances
    Xu, Shichao
    Fu, Yangyang
    Wang, Yixuan
    Yang, Zhuoran
    O'Neill, Zheng
    Wang, Zhaoran
    Zhu, Qi
    PROCEEDINGS OF THE 2022 THE 9TH ACM INTERNATIONAL CONFERENCE ON SYSTEMS FOR ENERGY-EFFICIENT BUILDINGS, CITIES, AND TRANSPORTATION, BUILDSYS 2022, 2022, : 89 - 98