Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators

被引:252
作者
Wang, C. Y. [1 ,2 ,3 ]
Herr, T. [1 ,2 ]
Del'Haye, P. [1 ,3 ]
Schliesser, A. [1 ,2 ]
Hofer, J. [1 ]
Holzwarth, R. [1 ,3 ]
Haensch, T. W. [1 ,4 ]
Picque, N. [1 ,4 ,5 ]
Kippenberg, T. J. [2 ]
机构
[1] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[2] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland
[3] Menlo Syst GmbH, D-82152 Martinsried, Germany
[4] Univ Munich, Fak Phys, D-80799 Munich, Germany
[5] Univ Paris 11, CNRS, Inst Sci Mol Orsay, F-91405 Orsay, France
来源
NATURE COMMUNICATIONS | 2013年 / 4卷
基金
瑞士国家科学基金会;
关键词
FOURIER-TRANSFORM SPECTROSCOPY; GENERATION; RESONATORS; MODES;
D O I
10.1038/ncomms2335
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The mid-infrared spectral range (lambda similar to 2-20 mu m) is of particular importance as many molecules exhibit strong vibrational fingerprints in this region. Optical frequency combs-broadband optical sources consisting of equally spaced and mutually coherent sharp lines-are creating new opportunities for advanced spectroscopy. Here we demonstrate a novel approach to create mid-infrared optical frequency combs via four-wave mixing in a continuous-wave pumped ultra-high Q crystalline microresonator made of magnesium fluoride. Careful choice of the resonator material and design made it possible to generate a broadband, low-phase noise Kerr comb at lambda = 2.5 mu m spanning 200 nm (approximate to 10 THz) with a line spacing of 100 GHz. With its distinguishing features of compactness, efficient conversion, large mode spacing and high power per comb line, this novel frequency comb source holds promise for new approaches to molecular spectroscopy and is suitable to be extended further into the mid-infrared.
引用
收藏
页数:7
相关论文
共 41 条
[1]   Mid-infrared Fourier transform spectroscopy with a broadband frequency comb [J].
Adler, Florian ;
Maslowski, Piotr ;
Foltynowicz, Aleksandra ;
Cossel, Kevin C. ;
Briles, Travis C. ;
Hartl, Ingmar ;
Ye, Jun .
OPTICS EXPRESS, 2010, 18 (21) :21861-21872
[2]   Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 μm [J].
Adler, Florian ;
Cossel, Kevin C. ;
Thorpe, Michael J. ;
Hartl, Ingmar ;
Fermann, Martin E. ;
Ye, Jun .
OPTICS LETTERS, 2009, 34 (09) :1330-1332
[3]   Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers [J].
Bernhardt, B. ;
Sorokin, E. ;
Jacquet, P. ;
Thon, R. ;
Becker, T. ;
Sorokina, I. T. ;
Picque, N. ;
Haensch, T. W. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2010, 100 (01) :3-8
[4]   Cavity-enhanced dual-comb spectroscopy [J].
Bernhardt, Birgitta ;
Ozawa, Akira ;
Jacquet, Patrick ;
Jacquey, Marion ;
Kobayashi, Yohei ;
Udem, Thomas ;
Holzwarth, Ronald ;
Guelachvili, Guy ;
Haensch, Theodor W. ;
Picque, Nathalie .
NATURE PHOTONICS, 2010, 4 (01) :55-57
[5]   Dynamical thermal behavior and thermal self-stability of microcavities [J].
Carmon, T ;
Yang, L ;
Vahala, KJ .
OPTICS EXPRESS, 2004, 12 (20) :4742-4750
[6]   Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators [J].
Chembo, Yanne K. ;
Yu, Nan .
PHYSICAL REVIEW A, 2010, 82 (03)
[7]   Coherent multiheterodyne spectroscopy using stabilized optical frequency combs [J].
Coddington, Ian ;
Swann, William C. ;
Newbury, Nathan R. .
PHYSICAL REVIEW LETTERS, 2008, 100 (01)
[8]   Colloquium:: Femtosecond optical frequency combs [J].
Cundiff, ST ;
Ye, J .
REVIEWS OF MODERN PHYSICS, 2003, 75 (01) :325-342
[9]   Full stabilization of a microresonator-based optical frequency comb [J].
Del'Haye, P. ;
Arcizet, O. ;
Schliesser, A. ;
Holzwarth, R. ;
Kippenberg, T. J. .
PHYSICAL REVIEW LETTERS, 2008, 101 (05)
[10]   Optical frequency comb generation from a monolithic microresonator [J].
Del'Haye, P. ;
Schliesser, A. ;
Arcizet, O. ;
Wilken, T. ;
Holzwarth, R. ;
Kippenberg, T. J. .
NATURE, 2007, 450 (7173) :1214-1217