Density and size effects on the thermal conductivity of atomic layer deposited TiO2 and Al2O3 thin films

被引:36
作者
DeCoster, Mallory E. [1 ]
Meyer, Kelsey E. [2 ]
Piercy, Brandon D. [3 ]
Gaskins, John T. [1 ]
Donovan, Brian F. [4 ]
Giri, Ashutosh [1 ]
Strnad, Nicholas A. [5 ,6 ]
Potrepka, Daniel M. [7 ]
Wilson, Adam A. [8 ]
Losego, Mark D. [3 ]
Hopkins, Patrick E. [1 ,2 ,9 ]
机构
[1] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA
[2] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA
[3] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[4] US Naval Acad, Dept Phys, Annapolis, MD 21402 USA
[5] Gen Tech Serv, Wall, NJ 07719 USA
[6] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
[7] US Army Res Lab, Sensors & Electron Devices Directorate, Adelphi, MD 20783 USA
[8] Natl Acad Sci, Natl Res Council, Washington, DC 20001 USA
[9] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA
关键词
CHEMICAL-VAPOR-DEPOSITION; ALUMINA COATINGS; LOW-TEMPERATURE; TRANSPORT;
D O I
10.1016/j.tsf.2018.01.058
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report on the room temperature thermal conductivity of atomic layer deposition-grown amorphous TiO2 and Al2O3 thin films as a function of film thickness and atomic density. For films thinner than 50 nm, we measure an effective thermal conductivity that is reduced with decreasing film thickness. This dependence is attributed to the increased influence of thermal boundary resistances as film thickness is reduced. In addition, we fit for a thickness-independent intrinsic thermal conductivity using a series-resistor model. For films thicker than similar to 50 nm, there is no significant dependence on thickness or substrate. We observe a dependence of the thermal conductivity on density, which agrees well with a differential effective-medium approximation modified minimum limit model.
引用
收藏
页码:71 / 77
页数:7
相关论文
共 56 条
  • [11] Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique
    Capinski, WS
    Maris, HJ
    Ruf, T
    Cardona, M
    Ploog, K
    Katzer, DS
    [J]. PHYSICAL REVIEW B, 1999, 59 (12): : 8105 - 8113
  • [12] High Temperature Thermal Conductivity of Amorphous Al2O3 Thin Films Grown by Low Temperature ALD
    Cappella, Andrea
    Battaglia, Jean-Luc
    Schick, Vincent
    Kusiak, Andrzej
    Lamperti, Alessio
    Wiemer, Claudia
    Hay, Bruno
    [J]. ADVANCED ENGINEERING MATERIALS, 2013, 15 (11) : 1046 - 1050
  • [13] Thermal boundary conductance accumulation and interfacial phonon transmission: Measurements and theory
    Cheaito, Ramez
    Gaskins, John T.
    Caplan, Matthew E.
    Donovan, Brian F.
    Foley, Brian M.
    Giri, Ashutosh
    Duda, John C.
    Szwejkowski, Chester J.
    Constantin, Costel
    Brown-Shaklee, Harlan J.
    Ihlefeld, Jon F.
    Hopkins, Patrick E.
    [J]. PHYSICAL REVIEW B, 2015, 91 (03)
  • [14] Chen G., 2005, PAPPAL SER MECH ENG
  • [15] Thermal conductivity and sound velocities of hydrogen-silsesquioxane low-k dielectrics -: art. no. 094205
    Costescu, RM
    Bullen, AJ
    Matamis, G
    O'Hara, KE
    Cahill, DG
    [J]. PHYSICAL REVIEW B, 2002, 65 (09) : 942051 - 942056
  • [16] ELECTRICAL PHENOMENA IN AMORPHOUS OXIDE FILMS
    DEARNALEY, G
    STONEHAM, AM
    MORGAN, DV
    [J]. REPORTS ON PROGRESS IN PHYSICS, 1970, 33 (11) : 1129 - +
  • [17] Einstein A, 1911, ANN PHYS-BERLIN, V35, P679
  • [18] Atomic Layer Deposition: An Overview
    George, Steven M.
    [J]. CHEMICAL REVIEWS, 2010, 110 (01) : 111 - 131
  • [19] Atomic layer deposition grown composite dielectric oxides and ZnO for transparent electronic applications
    Gieraltowska, S.
    Wachnicki, L.
    Witkowski, B. S.
    Godlewski, M.
    Guziewicz, E.
    [J]. THIN SOLID FILMS, 2012, 520 (14) : 4694 - 4697
  • [20] Glen A., 1979, SOLID STATE PHYS, V34, P1, DOI 10.1016/S0081-1947(08)60359-8