NON-NEGATIVE SPARSE CODING FOR HUMAN ACTION RECOGNITION

被引:0
作者
Amiri, S. Mohsen [1 ]
Nasiopoulos, Panos [1 ]
Leung, Victor C. M. [1 ]
机构
[1] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V5Z 1M9, Canada
来源
2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012) | 2012年
关键词
Human Action Recognition; Computer Vision; Machine Learning; Smart Home; SVM;
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
We consider the problem of human action recognition using non-negative sparse representation of extracted features from spatiotemporal video patches. Our algorithm trains dictionaries for the calculation of a non-negative sparse representation for feature vectors and uses a linear Support Vector Machine (SVM) to distinguish between different actions. We evaluate the performance of the proposed techniques by using two human action datasets (KTH and IXMAS). In both cases, the proposed technique outperforms state-of-the-art techniques, achieving 100% accuracy on the KTH dataset.
引用
收藏
页码:1421 / 1424
页数:4
相关论文
共 50 条
  • [41] Automatic Video Descriptor for Human Action Recognition
    Perera, Minoli
    Farook, Cassim
    Madurapperuma, A. P.
    2017 NATIONAL INFORMATION TECHNOLOGY CONFERENCE (NITC), 2017, : 61 - 66
  • [42] A Survey of Human Action Recognition and Posture Prediction
    Ma, Nan
    Wu, Zhixuan
    Cheung, Yiu-ming
    Guo, Yuchen
    Gao, Yue
    Li, Jiahong
    Jiang, Beijyan
    TSINGHUA SCIENCE AND TECHNOLOGY, 2022, 27 (06) : 973 - 1001
  • [43] Substitutive Skeleton Fusion for Human Action Recognition
    Azis, Nur Aziza
    Choi, Ho-Jin
    Iraqi, Youssef
    2015 INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2015, : 170 - 177
  • [44] CLASSIFICATION OF POLSAR IMAGE WITH NON-NEGATIVE TENSOR FACTORIZATION APPROACH
    Gou, Shuiping
    Chen, Wenshuai
    Liu, Yizhou
    Li, Pengcheng
    Jiao, Licheng
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 1150 - 1153
  • [45] Thermographic flow visualization by means of non-negative matrix factorization
    Gleichauf, Daniel
    Dollinger, Christoph
    Balaresque, Nicholas
    Gardner, Anthony D.
    Sorg, Michael
    Fischer, Andreas
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2020, 82
  • [46] Supervised input space scaling for non-negative matrix factorization
    Driesen, J.
    Van Hamme, H.
    SIGNAL PROCESSING, 2012, 92 (08) : 1864 - 1874
  • [47] On Rank Selection in Non-Negative Matrix Factorization Using Concordance
    Fogel, Paul
    Geissler, Christophe
    Morizet, Nicolas
    Luta, George
    MATHEMATICS, 2023, 11 (22)
  • [48] Imaging data analysis using non-negative matrix factorization
    Aonishi, Toru
    Maruyama, Ryoichi
    Ito, Tsubasa
    Miyakawa, Hiroyoshi
    Murayama, Masanori
    Ota, Keisuke
    NEUROSCIENCE RESEARCH, 2022, 179 : 51 - 56
  • [49] Silhouettes Based Human Action Recognition in Video via Procrustes Analysis and Fisher Vector Coding
    蔡加欣
    钟然旭
    李俊杰
    Journal of Donghua University(English Edition), 2019, 36 (02) : 140 - 148
  • [50] Human Action Recognition Using LBP-TOP as Sparse Spatio-Temporal Feature Descriptor
    Mattivi, Riccardo
    Shao, Ling
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, PROCEEDINGS, 2009, 5702 : 740 - 747