Evidence for Early Cognitive Impairment Related to Frontal Cortex in the 5XFAD Mouse Model of Alzheimer's Disease

被引:71
|
作者
Girard, Stephane D. [1 ]
Baranger, Kevin [1 ]
Gauthier, Cyrielle [1 ]
Jacquet, Marlyse [1 ]
Bernard, Anne [1 ]
Escoffier, Guy [1 ]
Marchetti, Evelyne [1 ]
Khrestchatisky, Michel [1 ]
Rivera, Santiago [1 ]
Roman, Francois S. [1 ]
机构
[1] Aix Marseille Univ, Ctr St Charles, CNRS, NICN,UMR7259, F-13331 Marseille 03, France
关键词
Alzheimer's disease; amyloid plaques; delayed tasks; frontal association cortex; gliosis; mouse model; olfactory H-maze; transgenic; DELAYED-RESPONSE TASKS; WORKING-MEMORY CAPACITY; PREFRONTAL CORTEX; AMYLOID-BETA; A-BETA; OLFACTORY DYSFUNCTION; EXECUTIVE FUNCTIONS; SYNAPTIC PROTEINS; TRANSGENIC MICE; NEURON LOSS;
D O I
10.3233/JAD-2012-120982
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The frontal cortex is a brain structure that plays an important role in cognition and is known to be affected in Alzheimer's disease (AD) in humans. Over the past years, transgenic mouse models have been generated to recapitulate the main features of this disease, including cognitive impairments. This study investigates frontal cortex dependent learning abilities in one of the most early-onset transgenic murine model of AD, the 5XFAD mice. We compared frontal performance of 2-, 4-, and 6-month-old 5XFAD mice with their wild-type littermates using a newly developed automated device, the olfactory H-maze, in which mice have to discover three different rules consecutively according to the delayed reaction paradigm. We report early cognitive deficits related to frontal cortex appearing in 4-month-old 5XFAD mice before hippocampal-dependent learning and memory impairment, in relation with neuropathologic processes such as strong gliosis and emerging amyloid plaques. The present results demonstrate that the olfactory H-maze is a very sensitive and simple experimental paradigm that allows assessment of frontal functions in transgenic mice and should be useful to test pre-clinical therapeutic approaches to alter the course of AD.
引用
收藏
页码:781 / 796
页数:16
相关论文
共 50 条
  • [41] Inconsistent Effects of Glatiramer Acetate Treatment in the 5xFAD Mouse Model of Alzheimer's Disease
    Karaahmet, Berke
    Olschowka, John A.
    O'Banion, M. Kerry
    PHARMACEUTICS, 2023, 15 (07)
  • [42] Altered Brain Adiponectin Receptor Expression in the 5XFAD Mouse Model of Alzheimer's Disease
    Pratap, Anishchal A.
    Holsinger, R. M. Damian
    PHARMACEUTICALS, 2020, 13 (07) : 1 - 13
  • [43] Microarray microRNA profiling of urinary exosomes in a 5XFAD mouse model of Alzheimer's disease
    Song, Zhiqi
    Qu, Yajin
    Xu, Yanfeng
    Zhang, Ling
    Li Zhou
    Han, Yunlin
    Zhao, Wenjie
    Yu, Pin
    Zhang, Yu
    Li, Xianglei
    Qin, Chuan
    ANIMAL MODELS AND EXPERIMENTAL MEDICINE, 2021, 4 (03) : 233 - 242
  • [44] Alterations in Odor Hedonics in the 5XFAD Alzheimer's Disease Mouse Model and the Influence of Sex
    Roberts, Elizabeth R.
    Dossat, Amanda M.
    Cortijo, Maria del Mar
    Brundin, Patrik
    Wesson, Daniel W.
    BEHAVIORAL NEUROSCIENCE, 2020, 134 (05) : 407 - 416
  • [45] Microarray microRNA profiling of urinary exosomes in a 5XFAD mouse model of Alzheimer's disease
    Zhiqi Song
    Yajin Qu
    Yanfeng Xu
    Ling Zhang
    Li Zhou
    Yunlin Han
    Wenjie Zhao
    Pin Yu
    Yu Zhang
    Xianglei Li
    Chuan Qin
    Animal Models and Experimental Medicine, 2021, (03) : 233 - 242
  • [46] Functional and structural connectome properties in the 5XFAD transgenic mouse model of Alzheimer's disease
    Kesler, Shelli R.
    Acton, Paul
    Rao, Vikram
    Ray, William J.
    NETWORK NEUROSCIENCE, 2018, 2 (02): : 241 - 258
  • [47] Mesoscopic Mapping of Visual Pathway in a Female 5XFAD Mouse Model of Alzheimer's Disease
    Nam, Yunkwon
    Kim, Sujin
    Kim, Jieun
    Hoe, Hyang-Sook
    Moon, Minho
    CELLS, 2022, 11 (23)
  • [48] Levels of brain synaptic and axonal proteins in 5XFAD mouse model of Alzheimer's disease
    Sonn, K.
    Jain, R. K.
    Zharkovsky, A.
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2012, 22 : S383 - S383
  • [49] Antenatal Hypoxia Accelerates the Onset of Alzheimer's Disease Pathology in 5xFAD Mouse Model
    Shen, Guofang
    Hu, Shirley
    Zhao, Zhen
    Zhang, Lubo
    Ma, Qingyi
    FRONTIERS IN AGING NEUROSCIENCE, 2020, 12
  • [50] No improvement after chronic ibuprofen treatment in the 5XFAD mouse model of Alzheimer's disease
    Hillmann, Antje
    Hahn, Stefanie
    Schilling, Stephan
    Hoffmann, Torsten
    Demuth, Hans-Ulrich
    Bulic, Bruno
    Schneider-Axmann, Thomas
    Bayer, Thomas A.
    Weggen, Sascha
    Wirths, Oliver
    NEUROBIOLOGY OF AGING, 2012, 33 (04)