Remarks on stochastic permanence of population models

被引:10
作者
Lv, Jingliang [1 ]
Wang, Ke [1 ,2 ]
Zou, Xiaoling [1 ]
机构
[1] Harbin Inst Technol Weihai, Dept Math, Weihai 264209, Peoples R China
[2] NE Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
基金
中国国家自然科学基金;
关键词
Lotka-Volterra; Stochastic permanence; Chebyshev inequality; Almost sure stochastic permanence; LOTKA-VOLTERRA MODEL; RANDOM PERTURBATION; EXTINCTION; DYNAMICS; ENVIRONMENTS; BEHAVIOR;
D O I
10.1016/j.jmaa.2013.06.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper examines the asymptotic behavior of the stochastic Lotka-Volterra model under Markovian switching. We show that the stochastic Lotka-Volterra model is stothastically permanent. Moreover, we give another type of stochastic permanence, and consider the relationship of two types of stochastic permanence under white noise perturbation. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:561 / 571
页数:11
相关论文
共 18 条
[1]   Growth and extinction of populations in randomly varying environments [J].
Braumann, Carlos A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (03) :631-644
[2]   Dynamics of a stochastic Lotka-Volterra model perturbed by white noise [J].
Du, Nguyen Huu ;
Sam, Vu Hai .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 324 (01) :82-97
[3]  
Ikeda N., 1981, J COMPUT APPL MATH
[4]  
Ji C., 2010, COMPUT APPL MATH, V235, P1326
[5]   Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation [J].
Ji, Chunyan ;
Jiang, Daqing ;
Shi, Ningzhong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 359 (02) :482-498
[6]   Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation [J].
Jiang, Daqing ;
Shi, Ningzhong ;
Li, Xiaoyue .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (01) :588-597
[7]   Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching [J].
Li, Xiaoyue ;
Gray, Alison ;
Jiang, Daqing ;
Mao, Xuerong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 376 (01) :11-28
[8]   POPULATION DYNAMICAL BEHAVIOR OF NON-AUTONOMOUS LOTKA-VOLTERRA COMPETITIVE SYSTEM WITH RANDOM PERTURBATION [J].
Li, Xiaoyue ;
Mao, Xuerong .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 24 (02) :523-545
[9]   Persistence and extinction in stochastic non-autonomous logistic systems [J].
Liu, Meng ;
Wang, Ke .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 375 (02) :443-457
[10]   Optimal harvesting from a population in a stochastic crowded environment [J].
Lungu, EM ;
Oksendal, B .
MATHEMATICAL BIOSCIENCES, 1997, 145 (01) :47-75